
Deploy web applications on premises and in the cloud

Scalable and elastic web platform

Web hosting platforms like IIS are the foundation for cloud computing, and

they need both scalability and elasticity to be effective. A platform has scalability

if it allows additional resources such as processing power, memory, or storage to

be provisioned to meet increasing demand. For example, if users of applications

running on your web server farm are complaining about delays and slow

performance, you may need to add more servers to your farm to scale outward.

Or you might upgrade your existing servers by adding more memory to scale

them upward. Elasticity, on the other hand, means allowing such additional

resources to be provisioned automatically on demand.

Whether you are an enterprise hosting line of business (LoB) applications or

a cloud hosting provider managing a multi-tenant public cloud, IIS 8 in Windows

Server 2012 can enhance both the scalability and elasticity of your hosting

environment. IIS 8 provides increased scale through improved Secure Sockets

Layer (SSL) scalability, better manageability via centralized SSL certificate support,

Non-Uniform Memory Access (NUMA)-aware scalability to provide greater

performance on cutting-edge hardware, and other new features and

enhancements.

NUMA-aware scalability

High-end server hardware is rapidly evolving. Powerful servers that are too

expensive today for many smaller businesses to acquire will soon be

commonplace.

NUMA, which until recently was available only on high-end server

hardware, will probably be a standard feature of commodity servers within the

next two years. NUMA was designed to overcome the scalability limits of the

traditional symmetric multi-processing (SMP) architecture, where all memory

access happens on the same shared memory bus. SMP works well when you have

ŀ ǎƳŀƭƭ ƴǳƳōŜǊ ƻŦ /t¦ǎΣ ōǳǘ ƛǘ ŘƻŜǎƴΩǘ ǿƘŜƴ ȅƻǳ ƘŀǾŜ ŘƻȊŜƴǎ ƻŦ them competing

for access to the shared bus. NUMA alleviates such bottlenecks by limiting how

many CPUs can be on any one memory bus and connecting them with a high-

speed interconnection.

How NUMA-aware scalability works

NUMA-aware scalability works by intelligently affinitizing worker processes

to NUMA nodes. CƻǊ ŜȄŀƳǇƭŜΣ ƭŜǘΩǎ ǎŀȅ ǘƘŀǘ ȅƻǳ ƘŀǾŜ ŀ ƭŀǊƎŜ ŜƴǘŜǊǇǊƛǎŜ ǿŜō

application that you want to deploy on an IIS 8 web garden. A web garden is an

application pool that uses more than one worker process. The number of worker

processes used by an application pool can be configured in the Advanced Settings

dialog box of an application pool, and as Figure 4-1 shows, the out-of the-box

configuration for IIS is to assign one worker process to each application pool.

FIGURE 4-1 Configuring a web garden on IIS 8.

By increasing the Maximum Worker Processes setting over its default value

of 1, you change the website associated with your application into a web garden.

On NUMA-aware hardware, the result is that IIS will try to assign each worker

process in the web garden to a different NUMA node. This manual affinity

approach allows IIS 8 to support NUMA-capable systems with more than 64

logical cores. You can also use this approach on NUMA-capable systems with

fewer than 64 logical cores if you want to try and custom-tune your workload.

On NUMA-capable systems with fewer than 64 logical cores, however, you

can simply set Maximum Worker Processes to 0, in which case IIS will start as

many worker processes as there are NUMA nodes on the system to achieve

optimal performance. You might use this approach, for example, if you are a

multi-tenant cloud hosting provider.

Benefits of NUMA-aware scalability

Internal testing by Microsoft has demonstrated the benefits that

enterprises and cloud hosting providers can gain from implementing IIS 8 in their

datacenters. For example, in a series of tests using the default IIS configuration of

one worker process per application pool, the number of requests per second that

could be handled by a web application actually decreased by about 20 percent as

one goes from 32 to 64 cores on systems that are not NUMA-capable because of

increased contention for the shared memory bus on such systems. In similar tests

on NUMA-capable systems, however, the number of requests per second that

could be handled increased by more than 50 percent as one goes from 32 to 64

cores. Such testing confirms the increased scalability that IIS 8 provides through

its NUMA-aware capabilities.

Server Name Indication

In previous versions of IIS, you could use host headers to support hosting

multiple HTTP websites using only a single shared IP address. But if you wanted

these websites to use Hypertext Transfer Protocol Secure (HTTPS), then you had a

ǇǊƻōƭŜƳ ōŜŎŀǳǎŜ ȅƻǳ ŎƻǳƭŘƴΩǘ use host headers. The reason is that host headers

are defined at the application level of the networking stack, so when an incoming

HTTPS request containing a host header comes to a web server hosting multiple

SSL-ŜƴŎǊȅǇǘŜŘ ǿŜōǎƛǘŜǎΣ ǘƘŜ ǎŜǊǾŜǊ ŎŀƴΩǘ ǊŜŀŘ ǘƘŜ Ƙƻǎǘ ƘŜŀŘŜǊ unless it decrypts

the request header first. To decrypt the request header, the server needs to use

one of the SSL certificates assigned to the server. Now, typically you have one

certificate for each HTTPS site on the server, but which certificate should the

server use to decrypt the header? The one specified by the host header in the

incoming request. But the request is encrypted, so you basically have a chicken-

and-egg problem.

The recommended solution in previous versions of IIS was to assign

multiple IP addresses to your web server and bind a different IP address to each

HTTPS site. By doing this, host headers are no longer needed, and IIS can

determine which SSL certificate to use to decrypt an incoming HTTPS request. If

your web server hosts hundreds (or even thousands) of different HTTPS websites,

ƘƻǿŜǾŜǊΣ ǘƘƛǎ ƳŜŀƴǎ ǘƘŀǘ ȅƻǳΩƭƭ ƴŜŜŘ ƘǳƴŘǊŜŘs or thousands of different IP

ŀŘŘǊŜǎǎŜǎ ŀǎǎƛƎƴŜŘ ǘƻ ǘƘŜ ƴŜǘǿƻǊƪ ŀŘŀǇǘŜǊ ƻŦ ȅƻǳǊ ǎŜǊǾŜǊΦ ¢ƘŀǘΩǎ ŀ ƭƻǘ ƻŦ

management overhead ς plus you may not have that many IP addresses available.

IIS 8 in Windows Server 2012 solves this problem by providing support for

Server Name Indication (SNI), which allows a virtual domain name (another name

for a host name) to be used to identify the network end point of an SSL/TSL

connection. The result is that IIS can now host multiple HTTPS websites, each with

their own SSL certificate, bound to the same shared IP address. SNI therefore

provides the key benefit of increased scalability for web servers hosting multiple

SSL sites, and it can help cloud hosting providers better conserve the dwindling

resources of their pool of available IP addresses.

Both the server and client need to support SNI, and most newer browsers

support SNI as ǿŜƭƭΦ bƻǘŜΣ ƘƻǿŜǾŜǊΣ ǘƘŀǘ aƛŎǊƻǎƻŦǘ LƴǘŜǊƴŜǘ 9ȄǇƭƻǊŜǊ с ŘƻŜǎƴΩǘ

support it.

Configuring SNI

SNI can be configured on a per-site basis by editing the bindings for each

HTTPS site from the IIS Manager console. Simply select the Require Server Name

Indication check box as shown in Figure 4-2 and type a host name for the site,

while leaving the IP Address setting as All Unassigned to use the single shared IP

address on the server.

FIGURE 4-2 ς Configuring SNI on an SSL site.

Centralized SSL certificate support

Cloud hosting providers that need to host multiple HTTPS websites on each

server in their web farms can also benefit from other SSL-related improvements

in IIS 8. These improvements help make the IIS platform more scalable and

manageable for hosting secure websites.

Managing SSL certificates on servers in web farms running earlier versions

of IIS was time-consuming because the certificates had to be imported into every

server in the farm. This made scaling out your farm by deploying additional

servers a difficult chore. In addition, replicating certificates across servers in a

farm was complicated by the need to ensure manually that certificate versions

were in sync.

IIS 8 now makes managing SSL certificates on servers in web farms much

easier by introducing a new central certificate store that lets you store all the

certificates for your web servers in a file share on the network instead of in the

certificate store of each server.

In addition to enhanced SSL manageability, IIS 8 includes significant

improvements in the area of SSL scalability. For example, in previous versions of

IIS, the certificate for an HTTPS website is loaded into memory (a process that

could take considerable time) upon the first client accessing the site, and the

certificate then remains in memory indefinitely. Hosting only a few SSL sites on an

IIS server, therefore, could lead to large amounts of memory being wasted for

secure sites that were rarely accessed.

In IIS 8, however, once a certificate is loaded into memory, it can now be

unloaded automatically after the secure site has been idle for a configurable

amount of time. In addition, certificates now load into memory almost

instantaneously, which eliminates the delay often experienced by clients

accessing secure sites for the first time in earlier versions of IIS. (Only the

certificates for HTTPS requests are loaded, instead of all the certificates.) This

change means that fewer certificates are kept in memory, which means that more

memory is available on the server for other uses, such as running worker

processes.

These scalability and manageability improvements mean that instead of

hosting fewer than 500 secure sites on a single server, you can now host more

than 10,000 SSL sites on one IIS 8 server. And as the next section discusses,

configuring a central store for SSL certificates also increases the elasticity of your

web farms.

Configuring a central store

To configure IIS to use a central store for storing SSL certificates, you first

need to add the Centralized SSL Certificate Support feature. You can do this by

starting the Add Roles And Features Wizard from Server Manager:

Once this feature has been enabled on your server, opening IIS Manager

will show a Centralized Certificates node in the Management section of your

ǎŜǊǾŜǊΩǎ ŎƻƴŦƛƎǳǊŀǘƛƻƴ settings:

Selecting the Centralized Certificates node and clicking the Open Feature

item in the Actions pane displays ŀ ƳŜǎǎŀƎŜ ǎŀȅƛƴƎ ǘƘŀǘ ŀ ŎŜƴǘǊŀƭ ŎŜǊǘƛŦƛŎŀǘŜΩǎ

location has not yet been set:

Clicking the Edit Feature Settings item in the Actions pane opens a dialog

box that lets you enable this feature and configure the path and credentials for

the shared folder on the network where SSL certificates should be stored:

Note that the certificate password is necessary when you have created PFX

files with a password that protects the private key. In addition, all your PFX files in

the shared certificate store must use the same password. You cannot have a

different password for each PFX file.

You can then group your SSL certificates in the Centralized Certificates pane

by Expiration Date, or Issued By, to manage them more easily:

hƴŎŜ ȅƻǳΩǾŜ ŎƻǇƛŜŘ ȅƻǳǊ {{L certificates to the central store, you can

configure SSL websites to use the central store when you add them in IIS

Manager:

bƻǘŜ ǘƘŀǘ ȅƻǳ ŘƻƴΩǘ ƴŜŜŘ ǘƻ ǎŜƭŜŎǘ ȅƻǳǊ ŎŜǊǘƛŦƛŎŀǘŜ ōȅ ƴŀƳŜ ǿƘŜƴ ȅƻǳ ŀŘŘ ŀ

new SSL site in IIS Manager. If you had to do this for each new secure site and you

had hundreds or thousands of certificates in your store, this would make

configuring SSL sites too difficult. Instead, you simply make sure that the name of

the certificate matches the host header name for the secure site that uses it. This

dynamic configuration of certificates for SSL sites means that adding an SSL

central store to your web farms makes your farms more elastic.

IIS CPU throttling

Managing CPU resources on farms of web servers in a multi-tenant shared

hosting environment can be challenging. When you are hosting websites and

applications from many different customers, each of them wants to get its fair

ǎƘŀǊŜ ƻŦ ǊŜǎƻǳǊŎŜǎΦ LǘΩǎ ŎƭŜŀǊƭȅ undesirable ǿƘŜƴ ƻƴŜ ŎǳǎǘƻƳŜǊΩǎ ǎƛǘŜ ŎƻƴǎǳƳŜǎ ǎƻ

much CPU resources that oǘƘŜǊ ŎǳǎǘƻƳŜǊǎΩ sites are starved of the resources they

need to process client requests.

IIS CPU throttling is designed to prevent one website from hogging all the

processing resources on the web server. Previous versions of IIS included a

rudimentary form of CPU throttling that basically just turned off a site once the

CPU resources being consumed by the site reached a certain threshold by killing

the worker processes associated with the site. Of course, this had the undesirable

effect of temporarily preventing clients from accessing the site. As a result, web

administrators sometimes used Windows System Resource Manager (WSRM)

with IIS to control the allocation of processor and memory resources among

multiple sites based on business priorities.

CPU throttling has been completely redesigned in IIS 8 to provide real CPU

throttling instead of just on/off switching. Now you can configure an application

pool to throttle the CPU usage so that it cannot consume more CPU processing

than a user-specified threshold, and the Windows kernel will make sure that the

worker process and all child processes stay below that level. Alternatively, you

can configure IIS to throttle an application pool when the system is under load,

which allows your application pool to consume more resources than your

specified level when the system is idle because the Windows kernel will throttle

the worker process and all child processes only when the system comes under

load.

Configuring CPU throttling

CPU throttling can be configured in IIS 8 at the application pool level. To do

this, open the Advanced Settings dialog box for your application pool in IIS

Manager and configure the settings in the CPU section (see Figure 4-3).

FIGURE 4-3 ς Configuring CPU throttling for an application pool.

You can also configure a default CPU throttling value for all application

pools on the server by clicking Set Application Pool Defaults in the Actions pane

when the Application Pools node is selected in IIS Manager.

Application Initialization

Nothing frustrates users more than trying to open a website in their web

browser and then waiting for the site to respond. With previous versions of IIS,

the delay that occurred when a web application was first accessed was because

the application needed to be loaded into memory before IIS could process the

ǳǎŜǊΩǎ ǊŜǉǳŜǎǘ ŀƴŘ ǊŜǘǳǊƴ ŀ ǊŜǎǇƻƴǎŜΦ ²ƛǘƘ ŎƻƳǇƭŜȄ Microsoft ASP.NET web

applications often needing to perform lengthy startup tasks, such as generating

and caching content, such delays could sometimes reach up to a minute or more

in some cases.

Such delays are now a thing of the past with the new Application

Initialization feature of IIS 8, which lets you configure IIS to spin up web

applications so they are ready to respond to the first request received.

Application pools can be pre-started instead of waiting for a first request, and

application are initialized when their worker processes start. Administrators can

decide which applications should be preloaded on the server.

In addition, IIS 8 can be configured tƻ ǊŜǘǳǊƴ ŀ ǎǘŀǘƛŎ άǎǇƭŀǎƘ ǇŀƎŜέ ƻǊ ƻǘƘŜǊ

static content while an application is being initialized so the user feels the website

being accessed is responding instead of failing to respond. This functionality can

be combined with the URL Rewrite module to create more complex types of pre-

generated static content.

Application Initialization can be configured at two levels:

- Machine-wide, in the ApplicationHost.config file for the server.

- Per application, in the Web.config file for the application.

The Application Initialization role service of the Web Server role must also

be added to the server to use this feature.

Dynamic IP Address Restrictions

When a web server receives unwanted activity from malicious clients, it can

prevent legitimate users from accessing websites hosted by the server. One way

of dealing with such situations in previous versions of IIS was to use static IP

filtering to block requests from specific clients. Static filtering had two limitations,

however:

- It required that you discover the IP address of the offending client and then

manually configure IIS to block that address.

- There was no choice as to what action IIS would take when it blocked the

client ς an HTTP 403.6 status message was always returned to the offending

client.

In IIS 8, however, blocking malicious IP addresses is now much simpler.

Dynamic IP Address Restrictions now provides three kinds of filtering to deal with

undesirable request traffic:

- Dynamic IP address filtering lets you configure your server to block access for

any IP address that exceeds a specified number of concurrent requests or

exceeds a specified number of requests within a given period of time.

- You can now configure how IIS responds when it blocks an IP address; for

example, by aborting the request instead of returning HTTP 403.6 responses to

the client.

- IP addresses can be blocked not only by client address, but also by addresses

received in the X-Forwarded-For HTTP header used in proxy mode.

Configuring dynamic IP address filtering

To configure dynamic IP address filtering for your server, website, or folder

path, select the corresponding IP Address And Domain Restrictions node in IIS

Manager and click Edit Dynamic Restriction Settings in the Actions pane. This

opens the Dynamic IP Restriction Settings dialog box shown in Figure 4-4, which

lets you deny IP addresses based on the number of concurrent requests and/or

the number of requests received over a specified period of time.

FIGURE 4-4 ς Configuring dynamic IP address filtering.

Once dynamic IP address filtering has been configured, you can configure

how IIS responds to clients whose requests are dynamically filtered. To do this,

select the appropriate IP Address And Domain Restrictions node in IIS Manager

and click Edit Feature Settings in the Actions pane. Doing this opens the Edit IP

And Domain Restriction Settings dialog box shown in Figure 4-5, which lets you

specify the type of response and whether to enforce such responses when the

incoming request passes through a proxy, such as a firewall or load balancer, that

changes the source IP address of the request.

FIGURE 4-5 ς Configuring the response behavior to dynamically filtered requests,

including when a proxy is encountered along the request path.

FTP Logon Attempt Restrictions

Brute-force attacks can create a Denial-of-Service (DoS) condition that can

prevent legitimate users from accessing an FTP server. To prevent this from

happening, IIS 8 includes a new feature called FTP Logon Attempt Restrictions

that lets you block offending users from logging on to an IIS FTP server for a

specified period of time. Unlike the Dynamic IP Address Restrictions described in

the previous section, which blacklists any client whose IP address violates the

configured dynamic IP address filtering settings, FTP Logon Attempt Restrictions

ǳǎŜǎ ŀ άƎǊŀȅƭƛǎǘƛƴƎέ approach that denies only the offending user for a certain

period of time. However, by configuring this time period to be slightly more than

that specified by your domain account lockout policy, you can prevent malicious

users from locking legitimate users out of accessing your FTP server.

Configuring FTP Logon Attempt Restrictions

To configure FTP Logon Attempt Restrictions for FTP sites on your server,

select the FTP Logon Attempt Restrictions node for your server in IIS Manager and

click the Open Feature item in the Actions pane. This displays the settings shown

in Figure 4-6, which let you enable the feature and specify a maximum number of

failed logon attempts within a given amount of time. Alternatively, you can

enable this feature in logging-only mode to collect data concerning possible

brute-force password attacks being conducted against your server.

Generating Windows PowerShell scripts using IIS Configuration Editor

Although IIS Manager lets you configure many aspects of IIS, there are a

number of configuration settings that are not exposed in the user interface. To

configure these settings, you need to drill down and edit configuration files like

ApplicationHost.config, the root configuration file that includes detailed

definitions of all sites, applications, virtual directories, and application pools on

the server, as well as global defaults for all web server settings. These

configuration files are schematized XML files, and you can either edit them in

Notepad (yikes!) or use the Configuration Editor, one of the management

features in IIS Manager.

New in IIS 8 is the capability of using the Configuration Editor to generate a

Windows PowerShell script for any configuration changes that you make to your

server using the Configuration Editor. This capability can be particularly useful for

cloud hosting providers who need to automate the configuration of large

numbers of web servers because you can use such a generated script as a

template for creating a finished script that can perform the task that you need to

automate.

[ŜǘΩǎ ǎŜŜ Ƙƻǿ ǘƘƛǎ ǿƻǊƪǎΦ ¢ƘŜ ǎŜŎǘƛƻƴ ά!ǇǇƭƛŎŀǘƛƻƴ LƴƛǘƛŀƭƛȊŀǘƛƻƴΣέ ŜŀǊƭƛŜǊ ƛƴ

this lecture, discussed how you can globally configure application pools on your

server so that web applications on the server are initialized before the first

request comes in to access them. To enable Application Initialization globally like

this, you can edit the ApplicationHost.config file so that the following line in the

<applicationPools> section:

<add name=".NET v4.5" managedRuntimeVersion="v4.0" />

changes to this:

