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NEED FOR INTEGRITY 
 

Verifying the integrity and authenticity of information is a prime necessity in computer systems and 

networks. In particular, two parties communicating over an insecure channel require a method by which 

information sent by one party can be validated as authentic (or unmodifed) by the other. 

 

Most commonly such a mechanism is based on a secret key shared between the parties and takes 

the form of a Message Authentication Code (MAC). (Other terms used include "Integrity Check Value" 

or "cryptographic checksum"). 

 

In this case, when party A transmits a message to party B, it appends to the message a value called 

the authentication tag, computed by the MAC algorithm as a function of the transmitted information 

and the shared secret key. At reception, B recomputes the authentication tag on the received message 

using the same mechanism (and key) and checks that the value he obtains equals the tag attached to the 

received message. Only if the values match is the information received considered as not altered on the 

way from A to B. The goal is to prevent forgery, namely, the computation, by the adversary, of a message 

(not sent by the legitimate parties) and its corresponding valid authentication tag. 
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THE NESTED CONSTRUCTION NMAC 
 

Let             where    and    are keys to the function   (i.e., random strings of length   each). 

We define a     function         which works on inputs   of arbitrary length as 

 

              
    

    . 

 

Notice that the outer function acts on the output of the iterated function and then it involves only 

one iteration of the compression function. That is, this outer function is basically the compression 

function    
 acting on    

    padded to a full block size (in some standard way as defined by the 

underlying hash scheme  ). 

 

Notice the simplicity and efficiency of the construction. The cost of the internal function is exactly 

the same as hashing the data with the basic (keyless hash function). 

The only additional cost is the outer application which, as said, involves only one iteration of the 

compression function. 
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THE FUNCTION HMAC 
 

Let   be the (iterated and key-less) hash function initialized with its usual fixed IV. The function 

     works on inputs   of arbitrary length and uses a single random string   of length   as its key: 

 

                                       

 

where 

 

    is the completion by adding 0's of   to a full  -bit block-size of the iterated hash function, 

      and      are two fixed  -bits constants (the "i" and "o" are mnemonics for inner and outer), 

   is the bitwise Exclusive Or operator, and the commas represent concatenation of the 

information. 

      is formed by repeating the byte x'36' as many times as needed to get a  -bit block, and      

is defined similarly using the byte x'5c'. (For example, in the case of MD5 and SHA-1 these bytes are 

repeated 64 times). 
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SECURITY OF HMAC 
 

The security of HMAC is based on the security of NMAC. 
 

The main observation for relating these two functions and their security is that by defining 

                and                , we get that                          . 
 

In other words, the above transformation on the key makes HMAC a particular case of NMAC, 

where the keys    and    are "pseudorandomly" derived from   using the compression function  . Since 

the analysis of NMAC assumes that    and    are random and independently chosen keys, then in order 

to apply this analysis to HMAC one needs to assume that    and    derived using   cannot be 

distinguished by the attacker from truly random keys. This represents an additional assumption on the 

quality of the function   (keyed through the input  ) as a pseudorandom function. We require a 

relatively weak form of pseudorandomness since the adversary trying to learn about possible 

dependencies of    and    does not get to see directly the output of the pseudorandom function on any 

input. 
 

To sum things up, attacks that work on HMAC and not on NMAC are possible, in principle. However, 

such an attack would reveal major weaknesses of the pseudorandom properties of the underlying hash 

function.  
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SECURITY OF HMAC 
 

It is important to note that in practice most keys are chosen pseudorandomly rather than as truly 

random strings; in particular, it is plausible that even if one uses NMAC, implementations will choose to 

derive    and    using a pseudorandom generator. In the case of HMAC such a pseudorandom generator 

is "built-in" through the definition of the function using the function   and the above defined pads. This 

use for pseudorandom generation of functions like MD5 or SHA-1 is very common in practical 

implementations. 
 

The above particular values of      and      were chosen to have a very simple representation (to 

simplify the function's specification and minimize the potential of implementation errors), and to provide 

a high Hamming distance between the pads. The latter is intended to exploit the mixing properties 

attributed to the compression function underlying the hash schemes in use. These properties are 

important in order to provide computational independence between the two derived keys. 
 

Finally, we note that the use of a single  -bit long key as opposed to two (independent) keys does 

not represent a weakening of the function relative to exhaustive search of the key, since even when 

chosen independently the keys    and    can be individually searched through a divide and conquer 

attack.  
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BIRTHDAY ATTACKS 
 

Birthday attacks, that are the basis to finding collisions in cryptographic hash functions, can be 

applied to attack also keyed MAC schemes based on iterated functions (including also CBC-MAC, and 

other schemes). 
 

These attacks apply to our new constructions as well. In particular, they constitute the best known 

forgery attacks against both the NMAC and HMAC constructions. 
 

Consideration of these attacks is important since they strongly improve on naive exhaustive search 

attacks. However, their practical relevance against these functions is negligible given the typical hash 

lengths like 128 or 160, since these attacks require knowledge of the MAC value (for a given key) on 

about      messages (where   is the length of the hash output). For values of       the attack 

becomes totally infeasible. In contrast to the birthday attack on key-less hash functions, the new attacks 

require interaction with the key owner to produce the MAC values on a huge number of messages, and 

then allow for no parallelization. For example, when using MD5 such an attack would require the 

authentication of     blocks (or     bits) of data using the same key. On a 1 Gbit/sec communication 

link, one would need 250,000 years to process all the data required by such an attack. This is in sharp 

contrast to birthday attacks on key-less hash functions which allow for far more efficient and close-to-

realistic attacks.  
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BIRTHDAY ATTACKS 
 

Notice that these attacks produce forgery of the MAC function but not key recovery. In some 

versions of the envelope method (the case where the same key is used to prepend and append and no 

block alignment of the appended key is performed), the birthday attacks can be further enhanced to 

provide full key recovery in time much shorter than required by full exhaustive search. Since these 

attacks require at least the complexity mentioned above for forgery based on birthday attacks, they 

cannot be considered as practical ones. Yet, it is interesting to note that they do not apply to either of 

our constructions, since here the alignment issue exploited by these attacks is no applicable. 

 

The forms of birthday attacks that apply to our constructions can become feasible only if very 

significant weaknesses in the collision probability of the underlying hash function are discovered. 

However, in such a case the basic use of such a function as collision-resistant (as originally intended) 

would be strongly compromised, and the function should be dropped for cryptographic use. Finally, we 

mention that these birthday attacks (at least in their straightforward form) can be avoided by 

randomizing the MAC construction in a per-message basis. 
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DIGITAL SIGNATURE 
 

A digital signature is an electronic analogue of a written signature; the digital signature can be used 

to provide assurance that the claimed signatory signed the information. 
 

 
 

In addition, a digital signature may be used to detect whether or not the information was modified 

after it was signed (i.e., to detect the integrity of the signed data). These assurances may be obtained 

whether the data was received in a transmission or retrieved from storage.  
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DIGITAL SIGNATURE 
 

A digital signature algorithm includes a signature generation process and a signature verification 

process. 

 

A signatory uses the generation process to generate a digital signature on data; a verifier uses the 

verification process to verify the authenticity of the signature. Each signatory has a public and private key 

and is the owner of that key pair. The private key is used in the signature generation process. The key 

pair owner is the only entity that is authorized to use the private key to generate digital signatures. In 

order to prevent other entities from claiming to be the key pair owner and using the private key to 

generate fraudulent signatures, the private key must remain secret. The approved digital signature 

algorithms are designed to prevent an adversary who does not know the signatory’s private key from 

generating the same signature as the signatory on a different message. In other words, signatures are 

designed so that they cannot be forged. A number of alternative terms are used in this Standard to refer 

to the signatory or key pair owner. An entity that intends to generate digital signatures in the future may 

be referred to as the intended signatory. Prior to the verification of a signed message, the signatory is 

referred to as the claimed signatory until such time as adequate assurance can be obtained of the actual 

identity of the signatory.  
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DIGITAL SIGNATURE 
 

The public key is used in the signature verification process. The public key need not be kept secret, 

but its integrity must be maintained. Anyone can verify a correctly signed message using the public key. 

 For both the signature generation and verification processes, the message (i.e., the signed data) is 

converted to a fixed-length representation of the message by means of an approved hash function. 

Both the original message and the digital signature are made available to a verifier. 

 A verifier requires assurance that the public key to be used to verify a signature belongs to the 

entity that claims to have generated a digital signature (i.e., the claimed signatory). That is, a verifier 

requires assurance that the signatory is the actual owner of the public/private key pair used to generate 

and verify a digital signature. A binding of an owner’s identity and the owner’s public key shall be 

effected in order to provide this assurance. 

 A verifier also requires assurance that the key pair owner actually possesses the private key 

associated with the public key, and that the public key is a mathematically correct key. 

By obtaining these assurances, the verifier has assurance that if the digital signature can be 

correctly verified using the public key, the digital signature is valid (i.e., the key pair owner really signed 

the message). Digital signature validation includes both the (mathematical) verification of the digital 

signature and obtaining the appropriate assurances. 
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DIGITAL SIGNATURE 
 

The following are reasons why such assurances are required. 

1. If a verifier does not obtain assurance that a signatory is the actual owner of the key pair whose public 

component is used to verify a signature, the problem of forging a signature is reduced to the problem 

of falsely claiming an identity. 

2. If the public key used to verify a signature is not mathematically valid, the arguments used to establish 

the cryptographic strength of the signature algorithm may not apply. The owner may not be the only 

party who can generate signatures that can be verified with that public key. 

3. If a public key infrastructure cannot provide assurance to a verifier that the owner of a key pair has 

demonstrated knowledge of a private key that corresponds to the owner’s public key, then it may be 

possible for an unscrupulous entity to have their identity (or an assumed identity) bound to a public 

key that is (or has been) used by another party. The unscrupulous entity may then claim to be the 

source of certain messages signed by that other party. Or, it may be possible that an unscrupulous 

entity has managed to obtain ownership of a public key that was chosen with the sole purpose of 

allowing for the verification of a signature on a specific message. 
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THE DIGITAL SIGNATURE ALGORITHM (DSA) 
 

A DSA digital signature is computed using a set of domain parameters, a private key  , a per-

message secret number  , data to be signed, and a hash function. A digital signature is verified using the 

same domain parameters, a public key   that is mathematically associated with the private key   used to 

generate the digital signature, data to be verified, and the same hash function that was used during 

signature generation. 

These parameters are defined as follows: 

  a prime modulus, where              , and   is the bit length of  . 

  a prime divisor of    –    , where             , and   is the bit length of  . 

  a generator of the subgroup of order        , such that          . 

  the private key that must remain secret;   is a randomly or pseudorandomly generated integer, such 

that          , i.e.,   is in the range     –   . 

  the public key, where             . 

  a secret number that is unique to each message;   is a randomly or pseudorandomly generated 

integer, such that          , i.e.,   is in the range     –   . 
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THE DIGITAL SIGNATURE ALGORITHM (DSA) 
 

Selection of parameter sizes and hash functions for DSA 
 

Standard FIPS 186-3 specifies the following choices for the pair   and   (the bit lengths of   and  , 

respectively): 

        ,         

        ,         

        ,         

        ,         
 

DSA per-message secret number 
 

A new secret random number   shall be generated prior to the generation of each digital signature 

for use during the signature generation process. This secret number shall be protected from 

unauthorized disclosure and modification. 

     is the multiplicative inverse of   with respect to multiplication modulo  ; i.e.,             

and                    . This inverse is required for the signature generation process.    and     

may be pre-computed, since knowledge of the message to be signed is not required for the 

computations. When   and     are pre-computed, their confidentiality and integrity shall be protected.  
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THE DIGITAL SIGNATURE ALGORITHM (DSA) 
 

DSA signature generation 

 

Let   be the bit length of  . Let               denote the minimum of the positive integers   and 

      , where        is the bit length of the hash function output block. 

 

The signature of a message   consists of the pair of numbers   and   that is computed according to 

the following equations: 

 

                    . 

 

  = the leftmost               bits of        . 

 

                         . 

 

 When computing  , the string   obtained from         shall be converted to an integer. 
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THE DIGITAL SIGNATURE ALGORITHM (DSA) 
 

Note that   may be computed whenever  ,  ,   and   are available, e.g., whenever the domain 

parameters  ,   and   are known, and   has been pre-computed,   may also be pre-computed, since 

knowledge of the message to be signed is not required for the computation of  . Pre-computed  ,     

and   values shall be protected in the same manner as the the private key   until   has been computed. 

 

The values of   and   shall be checked to determine if       or      . If either       or      , a 

new value of   shall be generated, and the signature shall be recalculated. It is extremely unlikely that 

      or       if signatures are generated properly. 

 

The signature       may be transmitted along with the message to the verifier. 
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THE DIGITAL SIGNATURE ALGORITHM (DSA) 
 

DSA signature verification and validation 

 

Signature verification may be performed by any party (i.e., the signatory, the intended recipient or 

any other party) using the signatory’s public key. A signatory may wish to verify that the computed 

signature is correct, perhaps before sending the signed message to the intended recipient. The intended 

recipient (or any other party) verifies the signature to determine its authenticity. 

 

Let   ,   , and    be the received versions of  ,  , and  , respectively; let   be the public key of the 

claimed signatory; and let   be the bit length of  . Also, let               denote the minimum of the 

positive integers   and       , where        is the bit length of the hash function output block. 

 

The signature verification process is as follows: 

1. The verifier shall check that            and           ; if either condition is violated, the 

signature shall be rejected as invalid. 
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THE DIGITAL SIGNATURE ALGORITHM (DSA) 
 

2. If the two conditions in step 1 are satisfied, the verifier computes the following: 
 

                . 

  = the leftmost               bits of         . 

               . 

                  . 

                            . 
 

 The string   obtained from          shall be converted to an integer. 

3. If       , then the signature is verified. For a proof that        when       ,       , and       . 
 

4. If   does not equal   , then the message or the signature may have been modified, there may have 

been an error in the signatory’s generation process, or an imposter (who did not know the private key 

associated with the public key of the claimed signatory) may have attempted to forge the signature. The 

signature shall be considered invalid. No inference can be made as to whether the data is valid, only that 

when using the public key to verify the signature, the signature is incorrect for that data. 
 

5. Prior to accepting the signature as valid, the verifier shall have assurances.  
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