
ISTSN Lecture 5 Frame 1

LECTURE 5

Hash functions

Telecommunication systems department

Lecturer: assistant professor Persikov Anatoliy Valentinovich

ISTSN Lecture 5 Frame 2

BASIC PROPERTIES

Cryptographic hash functions map strings of different lengths to short, fixed-size, outputs. These

functions, e.g., MD5, SHA-1 or SHA-2, are primarily designed to be collision resistant.

This means that if we represent such a hash function by , then it should be infeasible for an

adversary to find two strings and such that .

Notice that this cryptographic notion does not involve any secret key. Indeed, the collision-

resistance property is usually attached to keyless functions. The prime motivation for such functions is to

be combined with digital signatures in a way that makes these signatures more efficient and yet

unforgeable. For that application it is required that the function be publicly computable and, in

particular, that it involve no secret key.

ISTSN Lecture 5 Frame 3

BASIC PROPERTIES

In addition to the basic collision-resistance property, cryptographic hash functions are usually

designed to have some randomness-like properties, like good mixing properties, independence of

input/output, unpredictability of the output when parts of the input are unknown, etc. Not only do these

properties help in making it harder to find collisions, but also they help to randomize the input presented

to the signature algorithm (e.g., RSA) as usually required for the security of these functions.

It is the combination of these properties attributed to cryptographic hash functions that make them

so attractive for many uses beyond the original design as collision-resistant functions. These functions

have been proposed as the basis for pseudorandom generation, block ciphers, random transformation,

and message authentication codes. We concentrate on a particular class of cryptographic hash functions,

which we call iterated constructions.

ISTSN Lecture 5 Frame 4

REQUIREMENTS FOR A HASH FUNCTION

The purpose of a hash function is to produce a "fingerprint" of a file, message, or other block of

data. To be useful for message authentication, a hash function must have the following properties:

1) can be applied to a block of data of any size.

2) produces a fixed-length output.

3) is relatively easy to compute for any given , making both hardware and software

implementations practical.

4) For any given value , it is computationally infeasible to find such that . This is sometimes

referred to in the literature as the one-way property.

5) For any given block , it is computationally infeasible to find such that . This is

sometimes referred to as weak collision resistance.

6) It is computationally infeasible to find any pair such that . This is sometimes

referred to as strong collision resistance.

ISTSN Lecture 5 Frame 5

REQUIREMENTS FOR A HASH FUNCTION

The first three properties are requirements for the practical application of a hash function to

message authentication.

The fourth property, the one-way property, states that it is easy to generate a code given a message

but virtually impossible to generate a message given a code. This property is important if the

authentication technique involves the use of a secret value. The secret value itself is not sent; however, if

the hash function is not one way, an attacker can easily discover the secret value: If the attacker can

observe or intercept a transmission, the attacker obtains the message and the hash code

 . The attacker then inverts the hash function to obtain . Because the

attacker now has both and , it is a trivial matter to recover .

ISTSN Lecture 5 Frame 6

REQUIREMENTS FOR A HASH FUNCTION

The fifth property guarantees that an alternative message hashing to the same value as a given

message cannot be found. This prevents forgery when an encrypted hash code is used. For these cases,

the opponent can read the message and therefore generate its hash code. However, because the

opponent does not have the secret key, the opponent should not be able to alter the message without

detection. If this property were not true, an attacker would be capable of the following sequence: First,

observe or intercept a message plus its encrypted hash code; second, generate an unencrypted hash

code from the message; third, generate an alternate message with the same hash code.

The sixth property refers to how resistant the hash function is to a type of attack known as the

birthday attack, which we examine shortly.

ISTSN Lecture 5 Frame 7

ITERATED CONSTRUCTIONS

A particular methodology for constructing collision-resistant hash function has been proposed by

Merkle (and later by Damgard) This methodology forms the basis for the design of the most common

cryptographic hash functions like MD5 and SHA-1. It is based on a basic component called compression

function which processes short fixed-length inputs, and is then iterated in a particular way in order to

hash arbitrarily long inputs. Such a compression function, which we denote by , accepts two inputs: a

chaining variable of length and a block of data of length b. (For MD5 and SHA-1 we have , while

for the first and for the second .

ISTSN Lecture 5 Frame 8

ITERATED CONSTRUCTIONS

The operation of the iterated hash function is as follows. First, an -bit value is fixed. Next an

input is hashed by iterating the compression function. That is, if is the input, where

the 's are blocks of length each and is an arbitrary number of blocks, then let be the

message length. The value of the iterated function on is where and

for .

ISTSN Lecture 5 Frame 9

ITERATED CONSTRUCTIONS

Notice that a way to pad messages to an exact multiple of bits needs to be defined, in particular,

MD5 and SHA pad inputs to always include an encoding of their length.

The motivation for this iterative structure arises from the observation (of Merkle and Damgard) that

if the compression function is collision-resistant then so is the resultant iterated hash function. (The

converse is not necessarily true). Thus, this structure provides a general design criterion for collision

resistant hash functions since. Namely, it reduces the problem to the design of a collision resistant

function on inputs of some fixed size.

We will use the symbol to denote the compression function, and to denote the associated

iterated hash which we assume to include a standard way to pad inputs to an exact multiple of bits.

ISTSN Lecture 5 Frame 10

SHA-2

Standard FIPS 180-3 specifies five secure hash algorithms, SHA-1, SHA-224, SHA-256, SHA-384, and

SHA-512. All five of the algorithms are iterative, one-way hash functions that can process a message to

produce a condensed representation called a message digest. These algorithms enable the

determination of a message’s integrity: any change to the message will, with a very high probability,

result in a different message digest. This property is useful in the generation and verification of digital

signatures and message authentication codes, and in the generation of random numbers (bits).

Each algorithm can be described in two stages: preprocessing and hash computation.

Preprocessing involves padding a message, parsing the padded message into -bit blocks, and

setting initialization values to be used in the hash computation.

The hash computation generates a message schedule from the padded message and uses that

schedule, along with functions, constants, and word operations to iteratively generate a series of hash

values. The final hash value generated by the hash computation is used to determine the message digest.

ISTSN Lecture 5 Frame 11

SHA-2 ALGORITHMS

Algorithm Message Size (bits) Block Size (bits) Word Size (bits) Message Digest Size (bits)

SHA-1 512 32 160

SHA-224 512 32 224

SHA-256 512 32 256

SHA-384 1024 64 384

SHA-512 1024 64 512

The five algorithms differ most significantly in the number of bits of security that are provided for

the data being hashed. Security strengths of these five hash functions and the system as a whole when

each of them is used with other cryptographic algorithms, such as digital signature algorithms and keyed-

hash message authentication codes. Additionally, the five algorithms differ in terms of the size of the

blocks and words of data that are used during hashing.

ISTSN Lecture 5 Frame 12

SHA-256 PARAMETERS

 , , , …, Working variables that are the -bit words used in the computation of the hash values, .

 The -th hash value. is the initial hash value; is the final hash

 value and is used to determine the message digest.

 The word of the hash value, where

 is the left-most word of hash value .

 Constant value to be used for iteration of the hash computation.

 Number of zeroes appended to a message during the padding step.

 Length of the message, , in bits.

 Number of bits in a message block, .

 Message to be hashed.

 Message block , with a size of bits.

 The word of the message block, where i is the left-most word of message block .

 Number of bits to be rotated or shifted when a word is operated upon.

 Number of blocks in the padded message.

 Temporary -bit word used in the hash computation.

 Number of bits in a word.

 The -bit word of the message schedule.

ISTSN Lecture 5 Frame 13

SHA-256 FUNCTIONS

SHA-256 uses six logical functions, where each function operates on 32-bit words, which are

represented as , , and . The result of each function is a new 32-bit word.

 ,

 ,

 ,

 ,

 .

ISTSN Lecture 5 Frame 14

SHA-256 CONSTANTS

SHA-256 use the same sequence of sixty-four constant 32-bit words,

,

,…,

. These

words represent the first thirty-two bits of the fractional parts of the cube roots of the first sixty-four

prime numbers. In hex, these constant words are (from left to right):

428a2f98 71374491 b5c0fbcf e9b5dba5 3956c25b 59f111f1 923f82a4 ab1c5ed5

d807aa98 12835b01 243185be 550c7dc3 72be5d74 80deb1fe 9bdc06a7 c19bf174

e49b69c1 efbe4786 0fc19dc6 240ca1cc 2de92c6f 4a7484aa 5cb0a9dc 76f988da

983e5152 a831c66d b00327c8 bf597fc7 c6e00bf3 d5a79147 06ca6351 14292967

27b70a85 2e1b2138 4d2c6dfc 53380d13 650a7354 766a0abb 81c2c92e 92722c85

a2bfe8a1 a81a664b c24b8b70 c76c51a3 d192e819 d6990624 f40e3585 106aa070

19a4c116 1e376c08 2748774c 34b0bcb5 391c0cb3 4ed8aa4a 5b9cca4f 682e6ff3

748f82ee 78a5636f 84c87814 8cc70208 90befffa a4506ceb bef9a3f7 c67178f2

ISTSN Lecture 5 Frame 15

PADDING THE MESSAGE

The message, , shall be padded before hash computation begins. The purpose of this padding is to

ensure that the padded message is a multiple of 512.

Suppose that the length of the message, , is bits. Append the bit “1” to the end of the message,

followed by zero bits, where k is the smallest, non-negative solution to the equation

 . Then append the 64-bit block that is equal to the number expressed using a binary

representation. For example, the (8-bit ASCII) message “abc” has length 8×3 = 24, so the message is

padded with a one bit, then zero bits, and then the message length, to become

the 512-bit padded message

The length of the padded message should now be a multiple of 512 bits.

ISTSN Lecture 5 Frame 16

PROCESSING PREPARATION

Parsing the padded message

After a message has been padded, it must be parsed into -bit blocks before the hash

computation can begin.

For SHA-256, the padded message is parsed into 512-bit blocks, , ,…, . Since the 512

bits of the input block may be expressed as sixteen 32-bit words, the first 32 bits of message block are

denoted

, the next 32 bits are

, and so on up to

.

Setting the Initial Hash Value ()

The initial hash value, , shall consist of the following eight 32-bit words, in hex:

 = 0x6a09e667,

 = 0xbb67ae85,

 = 0x3c6ef372,

 = 0xa54ff53a,

 = 0x510e527f,

 = 0x9b05688c,

 = 0x1f83d9ab,

 = 0x5be0cd19.

These words were obtained by taking the first thirty-two bits of the fractional parts of the square

roots of the first eight prime numbers.

ISTSN Lecture 5 Frame 17

ALGORITHM

SHA-256 may be used to hash a message, , having a length of bits, where . The

algorithm uses:

1) a message schedule of sixty-four 32-bit words,

2) eight working variables of 32 bits each, and

3) a hash value of eight 32-bit words. The final result of SHA-256 is a 256-bit message digest.

The words of the message schedule are labeled , ,…, . The eight working variables are

labeled , , , , , , , and . The words of the hash value are labeled

,

,…,

 which will

hold the initial hash value, , replaced by each successive intermediate hash value (after each

message block is processed), , and ending with the final hash value, . SHA-256 also uses two

temporary words, and .

SHA-256 preprocessing:

1) Pad the message, .

2) Parse the padded message into N 512-bit message blocks, , , …, .

3) Set the initial hash value, .

ISTSN Lecture 5 Frame 18

ALGORITHM

After preprocessing is completed, each message block, , , …, , is processed in order,

using the following steps:

for to :

{

1. Prepare the message schedule, :

2. Initialize the eight working variables, , , , , , , , and , with the hash value:

,

,

,

,

,

,

,

.

ISTSN Lecture 5 Frame 19

ALGORITHM

3. For to :

{

 ;

 ; ; ; ; ; ; ; .

}

4. Compute the intermediate hash value :

;

;

;

;

;

;

;

;

}

 After repeating steps one through four a total of N times (i.e., after processing M(N)), the resulting

256-bit message digest of the message, M, is

ISTSN Lecture 5 Frame 20

THANKS FOR ATTENTION

