LECTURE S
Hash functions

Telecommunication systems department
Lecturer: assistant professor Persikov Anatoliy Valentinovich

ISTSN Lecture 5 Frame 1

BASIC PROPERTIES

Cryptographic hash functions map strings of different lengths to short, fixed-size, outputs. These
functions, e.g., MD5, SHA-1 or SHA-2, are primarily designed to be collision resistant.

This means that if we represent such a hash function by F, then it should be infeasible for an
adversary to find two strings x and x" such that F(x) = F(x').

Notice that this cryptographic notion does not involve any secret key. Indeed, the collision-
resistance property is usually attached to keyless functions. The prime motivation for such functions is to
be combined with digital signatures in a way that makes these signatures more efficient and yet
unforgeable. For that application it is required that the function be publicly computable and, in
particular, that it involve no secret key.

ISTSN Lecture 5 Frame 2

BASIC PROPERTIES

In addition to the basic collision-resistance property, cryptographic hash functions are usually
designed to have some randomness-like properties, like good mixing properties, independence of
input/output, unpredictability of the output when parts of the input are unknown, etc. Not only do these
properties help in making it harder to find collisions, but also they help to randomize the input presented
to the signature algorithm (e.g., RSA) as usually required for the security of these functions.

It is the combination of these properties attributed to cryptographic hash functions that make them
so attractive for many uses beyond the original design as collision-resistant functions. These functions
have been proposed as the basis for pseudorandom generation, block ciphers, random transformation,
and message authentication codes. We concentrate on a particular class of cryptographic hash functions,
which we call iterated constructions.

ISTSN Lecture 5 Frame 3

REQUIREMENTS FOR A HASH FUNCTION

The purpose of a hash function is to produce a "fingerprint" of a file, message, or other block of
data. To be useful for message authentication, a hash function H must have the following properties:

1) H can be applied to a block of data of any size.
2) H produces a fixed-length output.

3) H(x) is relatively easy to compute for any given x, making both hardware and software
implementations practical.

4) For any given value h, it is computationally infeasible to find x such that H(x) = h. This is sometimes
referred to in the literature as the one-way property.

5) For any given block x, it is computationally infeasible to find y # x such that H(y) = H(x). Thisis
sometimes referred to as weak collision resistance.

6) It is computationally infeasible to find any pair (x, y) such that H(x) = H(y). This is sometimes
referred to as strong collision resistance.

ISTSN Lecture 5 Frame 4

REQUIREMENTS FOR A HASH FUNCTION

The first three properties are requirements for the practical application of a hash function to
message authentication.

The fourth property, the one-way property, states that it is easy to generate a code given a message
but virtually impossible to generate a message given a code. This property is important if the
authentication technique involves the use of a secret value. The secret value itself is not sent; however, if
the hash function is not one way, an attacker can easily discover the secret value: If the attacker can
observe or intercept a transmission, the attacker obtains the message M and the hash code C =
H(S4g||M). The attacker then inverts the hash function to obtain Syg||M = H(C). Because the
attacker now has both M and S,5||M, it is a trivial matter to recover S,5.

ISTSN Lecture 5 Frame 5

REQUIREMENTS FOR A HASH FUNCTION

The fifth property guarantees that an alternative message hashing to the same value as a given
message cannot be found. This prevents forgery when an encrypted hash code is used. For these cases,
the opponent can read the message and therefore generate its hash code. However, because the
opponent does not have the secret key, the opponent should not be able to alter the message without
detection. If this property were not true, an attacker would be capable of the following sequence: First,
observe or intercept a message plus its encrypted hash code; second, generate an unencrypted hash
code from the message; third, generate an alternate message with the same hash code.

The sixth property refers to how resistant the hash function is to a type of attack known as the
birthday attack, which we examine shortly.

ISTSN Lecture 5 Frame 6

ITERATED CONSTRUCTIONS

A particular methodology for constructing collision-resistant hash function has been proposed by
Merkle (and later by Damgard) This methodology forms the basis for the design of the most common
cryptographic hash functions like MD5 and SHA-1. It is based on a basic component called compression
function which processes short fixed-length inputs, and is then iterated in a particular way in order to
hash arbitrarily long inputs. Such a compression function, which we denote by f, accepts two inputs: a
chaining variable of length and a block of data of length b. (For MD5 and SHA-1 we have b = 512, while
for the first | = 128 and for the secondl = 160.

b bits

{ bits > f — [bits

ISTSN Lecture 5 Frame 7

ITERATED CONSTRUCTIONS

The operation of the iterated hash function is as follows. First, an b-bit value IV is fixed. Next an
input is hashed by iterating the compression function. That is, if x = x4, x5, ..., X, is the input, where
the x;'s are blocks of length b each and n is an arbitrary number of blocks, then let x,,,; = |x| be the
message length. The value of the iterated function F on x is h,,,; where hy = IV and h; = f(h;_1; x;)
fori = 1; 2;...:n + 1.

T To - T ||

N\ ANEAN

v

ISTSN Lecture 5 Frame 8

ITERATED CONSTRUCTIONS

Notice that a way to pad messages to an exact multiple of b bits needs to be defined, in particular,

MD5 and SHA pad inputs to always include an encoding of their length.
The motivation for this iterative structure arises from the observation (of Merkle and Damgard) that

if the compression function is collision-resistant then so is the resultant iterated hash function. (The
converse is not necessarily true). Thus, this structure provides a general design criterion for collision
resistant hash functions since. Namely, it reduces the problem to the design of a collision resistant

function on inputs of some fixed size.

T T - Tn ||

N\ ANLEAN

f f

b F()

Y

Y
—

v

We will use the symbol f to denote the compression function, and F to denote the associated
iterated hash which we assume to include a standard way to pad inputs to an exact multiple of b bits.

ISTSN Lecture 5 Frame 9

SHA-2

Standard FIPS 180-3 specifies five secure hash algorithms, SHA-1, SHA-224, SHA-256, SHA-384, and
SHA-512. All five of the algorithms are iterative, one-way hash functions that can process a message to
produce a condensed representation called a message digest. These algorithms enable the
determination of a message’s integrity: any change to the message will, with a very high probability,
result in a different message digest. This property is useful in the generation and verification of digital
signatures and message authentication codes, and in the generation of random numbers (bits).

Each algorithm can be described in two stages: preprocessing and hash computation.

Preprocessing involves padding a message, parsing the padded message into m-bit blocks, and
setting initialization values to be used in the hash computation.

The hash computation generates a message schedule from the padded message and uses that

schedule, along with functions, constants, and word operations to iteratively generate a series of hash
values. The final hash value generated by the hash computation is used to determine the message digest.

ISTSN Lecture 5 Frame 10

SHA-2 ALGORITHMS

Algorithm | Message Size (bits) |Block Size (bits) | Word Size (bits) | Message Digest Size (bits)
SHA-1 < 264 512 32 160
SHA-224 < 264 512 32 224
SHA-256 < 264 512 32 256
SHA-384 < 2128 1024 64 384
SHA-512 < 2128 1024 64 512

The five algorithms differ most significantly in the number of bits of security that are provided for
the data being hashed. Security strengths of these five hash functions and the system as a whole when
each of them is used with other cryptographic algorithms, such as digital signature algorithms and keyed-
hash message authentication codes. Additionally, the five algorithms differ in terms of the size of the
blocks and words of data that are used during hashing.

ISTSN Lecture 5 Frame 11

SHA-256 PARAMETERS

a,b,c,..h Working variables that are the w-bit words used in the computation of the hash values, HO,
HO The i-th hash value. H(® is the initial hash value; H™ is the final hash
value and is used to determine the message digest.

Hj(i) The jt" word of the it"* hash value, where Héi) is the left-most word of hash value i.
K; Constant value to be used for iteration t of the hash computation.

k Number of zeroes appended to a message during the padding step.

[Length of the message, M, in bits.

m Number of bits in a message block, M®,

M Message to be hashed.

M® Message block i, with a size of m bits.

Mj(i) The jt" word of the i message block, where M i is the left-most word of message block i.
n Number of bits to be rotated or shifted when a word is operated upon.

N Number of blocks in the padded message.

T Temporary w-bit word used in the hash computation.

w Number of bits in a word.

W, The t'" w-bit word of the message schedule.

ISTSN Lecture 5 Frame 12

SHA-256 FUNCTIONS

SHA-256 uses six logical functions, where each function operates on 32-bit words, which are
represented as x, y, and z. The result of each function is a new 32-bit word.

Ch(x,y,z) = (x ANy)®(~ x A\ z),

Maj(x,y,z) = (x ANY)®(x Az)®(y A 2),

525} (x) = ROTR2(x)®ROTR3 (x) ®ROTR?* (x),
51256} (%) = ROTR® (x)®ROTR (x)®ROTR?5 (),
62°%(x) = ROTR? (x) ®ROTR8 (x)®SHR? (x),

6t2°¢}(x) = ROTRY (x)®ROTR (x) ®SHR(x).

ISTSN Lecture 5 Frame 13

SHA-256 CONSTANTS

SHA-256 use the same sequence of sixty-four constant 32-bit words, K|

{

prime numbers. In hex, these constant words are (from left to right):

256} {256}
» g

FXR)

{256}
. Kg3~ 7. These

words represent the first thirty-two bits of the fractional parts of the cube roots of the first sixty-four

428a2f98 | 71374491 |b5cOfbcf |e9b5dba5 |3956¢25b |[59f111f1 |923f82a4 |ablc5ed5
d807aa98 |12835b01 |243185be |550c7dc3 |72be5d74 |80deblfe |9bdc06a7 |cl9bfl74
e49b69cl |efbed786 |0fc1l9dc6 |240calcc |2de92c6f |4a7484aa |5ch0a9dc |76f988da
983e5152 [a831c66d |b00327c8 |bf597fc7 |c6e00bf3 |d5a79147 |06ca6351 |14292967
27b70a85 |2e1b2138 |4d2c6dfc |53380d13 |650a7354 |766a0abb |81c2c92e |92722c¢85
a2bfe8al |a8la664b |c24b8b70 |c76c¢51a3 |d192e819 |d6990624 |f40e3585 |1062a070
1924c116 |1e376c08 |2748774c |34b0Obcb5 |391cOcb3 |4ed8aada |5b9ccadf |682e6ff3
748f82ee | 78a5636f |84c87814 |8cc70208 |90befffa a4506ceb |bef9a3f7 |c67178f2

ISTSN Lecture 5

Frame 14

PADDING THE MESSAGE

The message, M, shall be padded before hash computation begins. The purpose of this padding is to
ensure that the padded message is a multiple of 512.

Suppose that the length of the message, M, is [bits. Append the bit “1” to the end of the message,
followed by k zero bits, where k is the smallest, non-negative solution to the equation [+ 1+ k =
448 mod 512. Then append the 64-bit block that is equal to the number [expressed using a binary
representation. For example, the (8-bit ASCIl) message “abc” has length 8x3 = 24, so the message is
padded with a one bit, then 448 — (24 + 1) = 423 zero bits, and then the message length, to become
the 512-bit padded message

423 64

—t— ———S——

01100001 01100010 01100011 1 00..00 00..011000

[—
l‘.Ca}3 f.Lb” L\’.c93 (‘{ — 24

The length of the padded message should now be a multiple of 512 bits.

ISTSN Lecture 5 Frame 15

PROCESSING PREPARATION

Parsing the padded message

After a message has been padded, it must be parsed into N m-bit blocks before the hash
computation can begin.

For SHA-256, the padded message is parsed into N 512-bit blocks, M@, M(Z),..., M®) Since the 512
bits of the input block may be expressed as sixteen 32-bit words, the first 32 bits of message block i are

denoted Méi), the next 32 bits are Ml(i), and so on up to Ml(is).
Setting the Initial Hash Value (H(?)

The initial hash value, H(O), shall consist of the following eight 32-bit words, in hex:

H® = 0x6a09¢667, H" = Oxbb67ae85, H® = 0x3c6ef372, H” = Oxa54ffs3a,
H” = 0x510e527f, H.”) = 0x9b05688c, H" = 0x1f83d9ab, H.” = Ox5be0cd19.

These words were obtained by taking the first thirty-two bits of the fractional parts of the square
roots of the first eight prime numbers.

ISTSN Lecture 5 Frame 16

ALGORITHM

SHA-256 may be used to hash a message, M, having a length of [bits, where 0 < [< 2%%. The
algorithm uses:
1) a message schedule of sixty-four 32-bit words,
2) eight working variables of 32 bits each, and
3) a hash value of eight 32-bit words. The final result of SHA-256 is a 256-bit message digest.
The words of the message schedule are labeled W,, Wj,..., W¢3. The eight working variables are

labeled a, b, ¢, d, e, f, g, and h. The words of the hash value are labeled Héi), H(i),..., Hgi) which will

hold the initial hash value, H(®), replaced by each successive intermediate hash value (after each

message block is processed), H®, and ending with the final hash value, H®). SHA-256 also uses two
temporary words, T; and T5.

SHA-256 preprocessing:
1) Pad the message, M.
2) Parse the padded message into N 512-bit message blocks, M, M) . MM,
3) Set the initial hash value, H(®.

ISTSN Lecture 5 Frame 17

ALGORITHM

After preprocessing is completed, each message block, MO M@ M®) s processed in order,
using the following steps:

fori = 1to N:

{
1. Prepare the message schedule, {W,}:

_ MY, 0<t<15,

W. =
C 6P Wy) + Wiy + 0P (Wiiys) + Wiy 16 < t < 63,

2. Initialize the eight working variables, a, b, ¢, d, e, f, g, and h, with the (i — 1)5* hash value:
a=Hy O,b=H"" c=Hy Y d=Hy P e=H,"", f=H ", g=Hy) h=H".

ISTSN Lecture 5 Frame 18

ALGORITHM

3.Fort =0to 63:

{

T, = h+ 22 (e) + Ch(e, f, 9) + K% + W,; T, = 2% (a) + Maj(a, b, c)
h=g,g=f;f=ee=d+T;;d=c;c=b;b=a;a=T; +T,.

}

4. Compute the it" intermediate hash value H®:

HY =a+H Y HO = b+ B HY = ¢+ 1YV, B = a + HITY,
HO = e + HO™D; 1O = f 4+ HED; HO = g 4 1D, HO = 4 gD,
}

After repeating steps one through four a total of N times (i.e., after processing M(N)), the resulting
256-bit message digest of the message, M, is

N N N N N N N N
HONH® N HD N HS D 1 1 HED [1HY

ISTSN Lecture 5 Frame 19

THANKS FOR ATTENTION

