
Variables and types

Subjects:
-Declaring a Variable
-²ƘŀǘΩǎ ŀƴ int?
-Rules for declaring variables
-Different types of int
-Representing Fractions
-Handling Floating-Point Variables
-Declaring a floating-point variable
-Using the Decimal Type: Is It an Integer or a Float?
-Declaring a decimal
-Comparing decimals, integers, and floating-point types
-Examining the bool type

Declaring a Variable

The most fundamental of all concepts in programming is that of the variable. A C#
variable is like a small box in which you can store things, particularly numbers, for later
use. (The term variable is borrowed from the world of mathematics.)

Unfortunately for programmers, C# places several limitations on variables ς
limitations that mathematicians ŘƻƴΩǘ have to consider. This lecture takes you through
the steps for declaring, initializing, and using variables. It also introduces several of the
most basic data types in C#.

When the mathematician says, άn is equal to 1Σέ that means
the term n is equivalent to 1 in some ethereal way. For
example, the mathematician may say this:

x = y2 + 2y + 1

if k = y + 1 then

x = k2

Programmers must define variables in a particular way ǘƘŀǘΩǎ
more demanding than the ƳŀǘƘŜƳŀǘƛŎƛŀƴΩǎ style. For
example, a C# programmer may write the following bit of
code:

int n;

n = 1;

The first line means, ά/ŀǊǾŜ off a small amount of storage in the ŎƻƳǇǳǘŜǊΩǎ memory and
assign it the name nέ. This step is analogous to reserving one of those storage lockers at
the train station and slapping the label n on the side. The second line says, ά{ǘƻǊŜ the
value 1 in the variable n, thereby replacing whatever that storage location already
Ŏƻƴǘŀƛƴǎέ. The train-locker equivalent is, άhǇŜƴ the train locker, rip out whatever
happens to be in there, and shove a 1 in its ǇƭŀŎŜέ.

Declaring a Variable

The mathematician says, άn equals 1έ. The C# programmer says in a more
precise way, ά{ǘƻǊŜ the value 1 in the variable nέ. C# operators tell the computer
what you want to do. In other words, operators are verbs and not descriptors.

The assignment operator takes the value on its right and stores it in the
variable on the left .

The equals symbol (=) is called the assignment operator.

int n;

n = 1;

What`s an int?

In C#, each variable has a fixed type. When you allocate one of those train lockers,
you have to pick the size you need.

For the example you select a locker ǘƘŀǘΩǎ designed to handle an integer ς C# calls it
an int . Integers are the counting numbers 1, 2, 3, and so on, plus 0 and the negative
numbers ς1, ς2, ς3, and so on.

Before you can use a variable, you must declare it. After you declare a variable as
int , it can hold and regurgitate integer values, as this example demonstrates:

// Declare a variable named n - an empty train locker .

int n;

// Declare an int variable m and initialize it with the value 2.

int m = 2;

// Assign the value stored in m to the variable n.

n = m;

The first line after the comment is a declaration that creates a little storage area, n,
designed to hold an integer value. The initial value of n is not specified until it is assigned a
value. The second declaration not only declares an int variable m but also initializes it
with a value of 2, all in one shot.

What`s an int?

To initialize a variable is to assign it a value for the first time. You ŘƻƴΩǘ know for
sure what the value of a variable is until it has been initialized. Nobody knows.

The final statement in the program assigns the value stored in m, which is 2, to the
variable n. The variable n continues to contain the value 2 until it is assigned a new value.
(The variable m ŘƻŜǎƴΩǘ lose its value when you assign its value to n. LǘΩǎ like cloning m.)

// Declare a variable named n - an empty train locker .

int n;

// Declare an int variable m and initialize it with the value 2.

int m = 2;

// Assign the value stored in m to the variable n.

n = m;

The term initialize means to assign an initial value.

Rules for declaring variables

You can initialize a variable as part of the declaration, like this:

// Declare another int variable and give it the initial value of 1.

int p = 1;

This is equivalent to sticking a 1 into that int storage locker when you first rent it,
rather than opening the locker and stuffing in the value later.

Initialize a variable when you declare it . In most (but not all) cases, C# initializes the
variable for you ς but ŘƻƴΩǘ rely on it to do that.

You may declare variables anywhere (well, almost anywhere) within a program.
However, you may not use a variable until you declare it and set it to some value.

Thus the last two assignments shown here are not legal:

// The following is illegal because m is not assigned

// a value before it is used .

int m;

n = m;

// The following is illegal because p has not been

// declared before it is used .

p = 2;

int p;

Finally, you cannot declare the same variable twice in the same scope (a function, for
example).

Different types of int

Most simple numeric variables are of type int . However, C# provides a number of
twists to the int variable type for special occasions.

All integer variable types are limited to whole numbers. The int type suffers from
other limitations as well. For example, an int variable can store values only in the range
from roughly ς2 billion to 2 billion.

A distance of 2 billion inches is greater than the circumference of the Earth.
In case 2 billion ƛǎƴΩǘ quite large enough for you, C# provides an integer type called

long (short for long int) that can represent numbers almost as large as you can
imagine. The only problem with a long is that it takes a larger train locker: A long
consumes 8 bytes (64 bits) ς twice as much as a garden-variety 4-byte (32-bit) int . C#
provides several other integer variable types, as shown in Table 1.

As you can see from Table 1, the names of most unsigned integer types start with a
u, while the signed types generally ŘƻƴΩǘ have a prefix.

!
Fixed values such as 1 also have a type. By default, a simple constant such

as 1 is assumed to be an int . Constants other than an int must be marked
with their variable type. For example, 123U is an unsigned integer, uint .

Most integer variables are called signed, which means they can represent
negative values. Unsigned integers can represent only positive values, but you
get twice the range in return.

Different types of int

Table 1 Size and Range of C# Integer Types

Representing fractions

Integers are useful for most calculations. Many calculations involve fractions, which
simple integers ŎŀƴΩǘ accurately represent. The common equation for converting from
Fahrenheit to Celsius temperatures demonstrates the problem, like this:

// Convert the temperature 41 degrees Fahrenheit.
int fahr = 41;

int celsius = (fahr - 32) * (5 / 9)

This equation works just fine for some values. For example, 41 degrees Fahrenheit is 5
degrees Celsius. [ŜǘΩǎ try a different value: 100 degrees Fahrenheit. Working through the
equation, 100ς32 is 68; 68 times 5ѷ9 is 37. But the answer is 37.78. Even ǘƘŀǘΩǎ wrong
because ƛǘΩǎ really 37.777 . . . with the 7s repeating forever.

An int can represent only integer numbers. The integer equivalent of 37.78 is 37.
This lopping off of the fractional part of a number to get it to fit into an integer variable is
called integer truncation. Truncation is not the same thing as rounding. Truncation lops off
the fractional part. Rounding picks the closest integer value. Thus, truncating 1.9 results in
1. Rounding 1.9 results in 2.

But integer truncation is unacceptable for many, if not most, applications.
Actually, the problem is much worse than that. An int ŎŀƴΩǘ handle the ratio 5ѷ9

either; it always yields the value 0. Consequently, the equation as written in the example
calculates celsius as 0 for all values of fahr. Even I admit ǘƘŀǘΩǎ unacceptable.

Handling Floating-Point Variables

The limitations of an int variable are unacceptable for some applications. The range
generally ƛǎƴΩǘ a problem ς the double-zillion range of a 64-bitlong integer should be
enough for almost anyone. However, the fact that an int is limited to whole numbers is
a bit harder to swallow.

In some cases, you need numbers that can have a nonzero fractional part.

Mathematicians call these real numbers.

Notice that a real number can have a nonzero fractional part ς that is, 1.5 is a real

number, but so is 1.0. For example, 1.0 + 0.1 is 1.1.

Fortunately, C# understands real numbers. Real numbers come in two flavors:

floating-point and decimal. Floating-point is the most common type.

Declaring a floating-point variable

A floating-point variable carries the designation float, and you declare one as shown
in this example:

float f = 1.0;

After you declare it as float, the variable f is a float for the rest of its natural
instructions.

Table 2 describes the two kinds of floating-point types. All floating-point variables
are signed. ό¢ƘŜǊŜΩǎ no such thing as a floating-point variable that ŎŀƴΩǘ represent a
negative value.)

Table 2 Size and Range of Floating-Point Variable Types

Declaring a floating-point variable

You might think float is the default floating-point variable type, but
actually the double is the default in C#. If you ŘƻƴΩǘ specify the type for, say,
12.3, C# calls it a double .

The Accuracy column in Table 2 refers to the number of significant digits that

such a variable type can represent.

The double packs a whopping 15 to 16 significant digits.
Use double variable types unless you have a specific reason to do

otherwise.

!

Using the decimal type: is it an integer or a float?

Both the integer and floating-point types have their problems. Floating-point variables
have rounding problems associated with limits to their accuracy, while int variables just
lop off the fractional part of a variable. In some cases, you need a variable type that offers
the best of two worlds:

ωLike a floating-point variable, it can store fractions.
ωLike an integer, numbers of this type offer exact values for use in computations ς for
example, 12.5 is really 12.5 and not 12.500001.

Fortunately, C# provides such a variable type, called decimal . A decimal variable can
represent a number between 10ς28 and 1028 ς ǘƘŀǘΩǎ a lot of zeros! And it does so without
rounding problems.

Declaring a decimal

Decimal variables are declared and used like any variable type, like this:

decimal m1 = 100 ; // Good

decimal m2 = 100M; // Better

The first declaration shown here creates a variable m1 and initializes it to a
value of 100 . What ƛǎƴΩǘ obvious is that 100 is actually of type int . Thus, C#
must convert the int into a decimal type before performing the initialization.
Fortunately, C# understands what you mean ς and performs the conversion for
you.

The declaration of m2 is the best. This clever declaration initializes m2 with
the decimal constant 100M.

The letter M at the end of the number specifies that the constant is of type decimal .
No conversion is required.

!

Comparing decimals, integers and floating-point types

The decimal variable type seems to have all the advantages and none of the
disadvantages of int or double types. Variables of this type have a very large range,
they ŘƻƴΩǘ suffer from rounding problems, and 25.0 is 25.0 and not 25.00001.

The decimal variable type has two significant limitations, however.

V First, a decimal is not considered a counting number because it may contain a
fractional value. Consequently, you ŎŀƴΩǘ use them in flow-control loops.
V The second problem with decimal variables is equally as serious or even more so.
Computations involving decimal values are significantly slower than those involving
either simple integer or floating-point values ς and I do mean significant. On a crude
benchmark test of 300,000,000 adds and subtracts, the operations involving decimal
variables were approximately 50 times slower than those involving simple int variables.
The relative computational speed gets even worse for more complex operations. Besides
that, most computational functions, such as calculating sines or exponents, are not
available for the decimal number type.

Clearly, the decimal variable type is most appropriate for applications such as

banking, in which accuracy is extremely important but the number of calculations is
relatively small.

Examining the bool type

Former C and C++ programmers are accustomed to using the int value 0
(zero) to mean false and nonzero to mean true . That ŘƻŜǎƴΩǘ work in C#.

You declare a bool variable this way: !
bool thisIsABool = true;

No conversion path exists between bool variables and any other types. In other
words, you ŎŀƴΩǘ convert a bool directly into something else. (Even if you could, you
ǎƘƻǳƭŘƴΩǘ because it ŘƻŜǎƴΩǘ make any sense.) In particular, you ŎŀƴΩǘ convert a bool
into an int (such as false becoming 0) or a string (such as false becoming the
word ñfalseò).

Finally, a logical variable type.

The Boolean type bool can have two values: true or false .

The Intrinsic Data Types of C#

Short CLS System type Range Meaning in life

bool Yes System.Boolean True or false Represents truth or falsity

sbyte No System.SByte ς128 to 127 Signed 8-bit number

byte Yes System.Byte 0 to 255 Unsigned 8-bit number

short Yes System.Int16 ς32,768 to 32,767 Signed 16-bit number

ushort No System.UInt16 0 to 65,535 Unsigned 16-bit number

int Yes System.Int32 ς2,147,483,648 to 2,147,483,647 Signed 32-bit number

uint No System.UInt32 0 to 4,294,967,295 Unsigned 32-bit number

long Yes System.Int64 ς9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

Signed 64-bit number

ulong No System.UInt64 0 to 18,446,744,073,709,551,615 Unsigned 64-bit number

char Yes System.Char U+0000 to U+ffff Single 16-bit Unicode char

float Yes System.Single ҕ1.5 10eς45 to ҕ3.4 5 10e38 32-bit floating-point number

double Yes System.Double ҕ5.0 10eς324 to ҕ1.7 5 10e308 64-bit floating-point number

decimal Yes System.Decimal ҕ1.0 10eς28 to ҕ7.9 5 10e28 96-bit signed number

string Yes System.String Limited by system memory Represents a set of

Unicode characters

object Yes System.Object Can store any type in an object

variable

The base class of all types in the

.NET universe

Variable Declaration and Initialization

When you are declaring a data type as a local variable (e.g., a variable within a
ƳŜƳōŜǊ ǎŎƻǇŜύΣ ȅƻǳ Řƻ ǎƻ ōȅ ǎǇŜŎƛŦȅƛƴƎ ǘƘŜ Řŀǘŀ ǘȅǇŜ ŦƻƭƭƻǿŜŘ ōȅ ǘƘŜ ǾŀǊƛŀōƭŜΩǎ ƴŀƳŜΦ

static void LocalVarDeclarations ()

{

 Console .WriteLine ("=> Data Declarations:");

 // Local variables are declared and initialized as

follows:

 // dataType varName = initialValue ;

 int myInt = 0;

 string myString ;

 myString = "This is my character data";

 // Declare 3 bools on a single line.

 bool b1 = true , b2 = false , b3 = b1;

 // Very verbose manner in which to declare a bool .

 System. Boolean b4 = false;

 Console .WriteLine (" Your data: {0}, {1}, {2}, {3}, {4},

{5}",

 myInt , myString , b1, b2, b3, b4);

 Console .WriteLine ();

}

Variable Declaration and Initialization

άNew-ingέ LƴǘǊƛƴǎƛŎ 5ŀǘŀ ¢ȅǇŜǎ

All intrinsic data types support what is known as a default constructor. In a nutshell,
this feature allows you to create a variable using the new keyword, which automatically
sets the variable to its default value:
ω bool types are set to false ;
ω numeric data is set to 0 (or 0.0 in the case of floating-point data types);
ω char types are set to a single empty character.
ω DateTime types are set to 1/1/0001 12:00:00 AM ;
ω object references (including strings) are set to null .

Although it is more cumbersome to use the new keyword when creating a basic data

type variable, the following is syntactically well-formed C# code:

static void NewingDataTypes ()

{

 Console.WriteLine ("=> Using new to create intrinsic data types:");

 bool b = new bool ();

 int i = new int ();

 double d = new double();

 DateTime dt = new DateTime ();

 Console.WriteLine ("{0}, {1}, {2}, {3}",

 b, i , d, dt);

 Console.WriteLine ();

}

άNew-ingέ LƴǘǊƛƴǎƛŎ 5ŀǘŀ ¢ȅǇŜǎ

Formatting Numerical Data

If you require more elaborate formatting for numerical data, each placeholder can
optionally contain various format characters.

 These format characters are suffixed to a given placeholder value using the colon token
(e.g., { 0: C}, { 1: d}, { 2: X}, and so on). To illustrate, update the Main() method to
call a new helper function named FormatNumericalData () .

Format Character Meaning in Life

C or c Used to format currency. By default, the flag will prefix the local cultural symbol

(a dollar sign [$] for US English).

D or d Used to format decimal numbers. This flag may also specify the minimum

number of digits used to pad the value.

E or e Used for exponential notation. Casing controls whether the exponential constant

is uppercase (E) or lowercase (e).

F or f Used for fixed-point formatting. This flag may also specify the minimum number

of digits used to pad the value.

G or g Stands for general. This character can be used to format a number to fixed or

exponential format.

N or n Used for basic numerical formatting (with commas).

X or x Used for hexadecimal formatting. If you use an uppercase X, your hex format will

also contain uppercase characters.

Formatting Numerical Data

// Now make use of some format tags .

static void FormatNumericalData ()

{

 Console . WriteLine ("The value 99999 in various formats : ") ;

 Console . WriteLine ("c format : { 0: c}", 99999) ;

 Console . WriteLine ("d 9 format : { 0: d9}", 99999) ;

 Console . WriteLine ("f 3 format : { 0: f 3}", 99999) ;

 Console . WriteLine ("n format : { 0: n}", 99999) ;

 // Notice that upper - or lowercasing for hex

 // determines if letters are upper - or lowercase .

 Console . WriteLine ("E format : { 0: E}", 99999) ;

 Console . WriteLine ("e format : { 0: e}", 99999) ;

 Console . WriteLine ("X format : { 0: X}", 99999) ;

 Console . WriteLine ("x format : { 0: x}", 99999) ;

}

Formatting Numerical Data

Formatting Numerical Data Beyond Console Applications

static void DisplayMessage ()

{

 // Using string.Format () to format a string literal.

 string userMessage = string.Format ("100000 in hex is {0:x}", 100000);

 // You would need to reference System.Windows.Forms.dll

 // in order to compile this line of code!

 System.Windows.Forms.MessageBox.Show (userMessage);

}

Data allocation in programs and operating systems

Memory management is the act of managing computer memory. In its simpler forms, this involves
providing ways to allocate portions of memory to programs at their request, and freeing it for reuse
when no longer needed. The management of main memory is critical to the computer system.

Virtual memory systems separate the memory addresses used by a process from actual physical
addresses, allowing separation of processes and increasing the effectively available amount of RAM
using disk swapping. The quality of the virtual memory manager can have a big impact on overall
system performance.

Garbage collection is the automated allocation, and deallocation of computer memory resources for
a program. This is generally implemented at the programming language level and is in opposition to
manual memory management, the explicit allocation and deallocation of computer memory resources.

Stacks in computing architectures are regions of memory where data is added or removed in a last-in-
first-out manner.

Dynamic memory allocation (also known as heap-based memory allocation) is the allocation of
memory storage for use in a computer program during the runtime of that program. It can be seen
also as a way of distributing ownership of limited memory resources among many pieces of data and
code.

hǊŘŜǊ ƻŦ Lb ǎǘǊŜŀƳΥ мΣ нΣ оΣ пΣ рΣ Χ
hǊŘŜǊ ƻŦ h¦¢ ǎǘǊŜŀƳΥ ΧΣ рΣ пΣ оΣ нΣ м

The Data Type Class Hierarchy

¢ƘŜ ǇǊƛƳƛǘƛǾŜ Φb9¢ Řŀǘŀ ǘȅǇŜǎ ŀǊŜ ŀǊǊŀƴƎŜŘ ƛƴ ŀ άŎƭŀǎǎ ƘƛŜǊŀǊŎƘȅέΦ

Each of these types derives from System.Object, which defines a set of methods (ToString(),
Equals(), GetHashCode(), and so forth) common to all types in the .NET base class libraries.

The Data Type Class Hierarchy

 Many numerical data types derive from a class named System.ValueType. Descendents
of ValueType are automatically allocated on the stack and therefore have a very predictable
lifetime and are quite efficient. On the other hand, types that do not have System.ValueType
in their inheritance chain (such as System.Type, System.String, System.Array,
System.Exception, and System.Delegate) are not allocated on the stack, but on the garbage-
collected heap.

static void ObjectFunctionality ()

{

 Console.WriteLine ("=> System.Object Functionality:");

 // A C# int is really a shorthand for System.Int32.

 // which inherits the following members from System.Object .

 Console.WriteLine ("12.GetHashCode() = {0}", 12.GetHashCode());

 Console.WriteLine ("12.Equals(23) = {0}", 12.Equals(23));

 Console.WriteLine ("12.ToString() = {0}", 12.ToString());

 Console.WriteLine ("12.GetType() = {0}", 12.GetType());

 Console.WriteLine ();

}

 A C# keyword (such as int) is simply
shorthand notation for the corresponding
system type (in this case, System . Int 32),
the following is perfectly legal syntax, given
that System . Int 32 (the C# int)
eventually derives from System . Object ,
and therefore can invoke any of its public
members.

Thanks for attention

