
.NET Technology

Subjects:
- NET Solution
-Building Blocks of the .NET Platform
-Common Language Runtime
-.NET Assemblies
-The Role of .NET Type Metadata
-Just-in-time compiling
-Platform independence

Introduction

What’s a program?

What is a program? In a practical sense, a Windows OS program is an executable file

that you can run by double-clicking its icon. For example, the version of Microsoft Word
is a program. You call that an executable program, or executable for short. The names of
executable program files generally end with the extension .exe. Word, for example, is
Winword.exe.

But a program is something else, as well. An executable program consists of one or

more source files. A C# source file, for instance, is a text file that contains a sequence of
C# commands, which fit together according to the laws of C# grammar. This file is
known as a source file.

What’s C#?

The C# programming language is one of those intermediate languages that

programmers use to create executable programs. C# combines the range of the powerful
but complicated C++ (pronounced “see plus plus”) with the ease of use of the friendly
but more verbose Visual Basic. (Visual Basic’s newer .NET incarnation is almost on par
with C# in most respects. As the flagship language of .NET, C# tends to introduce most
new features first.) A C# program file carries the extension .cs.

Introduction

C# is
Flexible: C# programs can execute on the current machine, or they can be

transmitted over the Web and executed on some distant computer.
Powerful: C# has essentially the same command set as C++ but with the rough

edges filed smooth.
Easier to use: C# error-proofs the commands responsible for most C++ errors, so

you spend far less time chasing down those errors.
Visually oriented: The .NET code library that C# uses for many of its capabilities

provides the help needed to readily create complicated display frames with drop-down
lists, tabbed windows, grouped buttons, scroll bars, and background images, to name
just a few.

Internet-friendly: C# plays a pivotal role in the .NET Framework, Microsoft’s
current approach to programming for Windows, the Internet, and beyond. .NET is
pronounced dot net.

Secure: Any language intended for use on the Internet must include serious
security to protect against malevolent hackers.

Finally, C# is an integral part of .NET.

.NET Solution

What’s .NET?
.NET began several years ago as Microsoft’s strategy to open up the Web to mere

mortals like you and me. Today, it’s bigger than that, encompassing everything
Microsoft does. In particular, it’s the new way to program for Windows. It also gives a C-
based language, C#, the simple, visual tools that made Visual Basic so popular.

.NET Solution

The .NET Framework is an integral Windows component that supports building and
running the next generation of applications and XML Web services.

The .NET Framework is designed to fulfill the following objectives:

•to provide a consistent object-oriented programming environment whether object code is
stored and executed locally, executed locally but Internet-distributed, or executed remotely;

•to provide a code-execution environment that minimizes software deployment and
versioning conflicts;

•to provide a code-execution environment that promotes safe execution of code, including
code created by an unknown or semi-trusted third party;

•to provide a code-execution environment that eliminates the performance problems of
scripted or interpreted environments;

•to make the developer experience consistent across widely varying types of applications,
such as Windows-based applications and Web-based applications;

•to build all communication on industry standards to ensure that code based on the .NET
Framework can integrate with any other code.

Building Blocks of the .NET Platform

The .NET Framework has two main components:
• the common language runtime (an agent that manages code at execution time, providing core services
such as memory management, thread management, and remoting, while also enforcing strict type safety
and other forms of code accuracy that promote security and robustness)
• the .NET Framework class library (a comprehensive, object-oriented collection of reusable types that
you can use to develop applications ranging from traditional command-line or graphical user interface
applications to applications based on the latest innovations provided by ASP.NET, such as Web Forms and
XML Web services).

Common Language Runtime

Manages memory, thread execution, code execution, code safety verification,
compilation, and other system services.

It enforces code robustness by implementing a strict type-and-code-verification
infrastructure called the common type system (CTS).

Role of the Base Class Libraries

NET platform provides a base
class library that is available to

all .NET programming languages.

.NET Assemblies

When a *.dll or an *.exe has been created using a .NET-aware compiler, the
resulting module is bundled into an assembly.

Regardless of which .NET language you choose to program with, understand that despite the
fact that .NET binaries take the same file extension as COM servers and unmanaged Win32

binaries (*.dll or *.exe), they have absolutely no internal similarities.

NET binaries do not contain platform-specific instructions, but rather platform-agnostic
intermediate language (IL) and type metadata.

Simple program (C# and Visual Basic .NET)

using System;

namespace CalculatorExample

{

 class Program // app's entry point.

 {

 static void Main()

 {

 Calc c = new Calc();

 int ans = c.Add(10, 84);

 Console.WriteLine("10 + 84 is {0}.", ans);

 Console.ReadLine();

 }

 }

 class Calc // The C# calculator.

 {

 public int Add(int x, int y)

 { return x + y; }

 }

}

.method public hidebysig instance

int32 Add(int32 x, int32 y) cil managed

{

// Code size 9 (0x9)

.maxstack 2

.locals init (int32 V_0)

IL_0000: nop

IL_0001: ldarg.1

IL_0002: ldarg.2

IL_0003: add

IL_0004: stloc.0

IL_0005: br.s IL_0007

IL_0007: ldloc.0

IL_0008: ret

} // end of method Calc::Add

Imports System

Namespace CalculatorExample

 Module Program

 Sub Main()

 Dim c As New Calc

 Dim ans As Integer = c.Add(10, 84)

 Console.WriteLine("10 + 84 is {0}.", ans)

 Console.ReadLine()

 End Sub

 End Module

 Class Calc

 Public Function Add(ByVal x As Integer,

 ByVal y As Integer) As Integer

 Return x + y

 End Function

 End Class

End Namespace

.method public instance

int32 Add(int32 x, int32 y) cil managed

{

// Code size 8 (0x8)

.maxstack 2

.locals init (int32 V_0)

IL_0000: ldarg.1

IL_0001: ldarg.2

IL_0002: add.ovf

IL_0003: stloc.0

IL_0004: br.s IL_0006

IL_0006: ldloc.0

IL_0007: ret

} // end of method Calc::Add

The Role of .NET Type Metadata

 In addition to CIL instructions, a .NET assembly contains full, complete, and accurate metadata,
which describes each and every type (class, structure, enumeration, and so forth) defined in the binary,
as well as the members of each type (properties, methods, events, and so on).

CREATING OF METADATA IS COMPILER JOB !!!

 Because .NET metadata is so wickedly meticulous, assemblies are completely self-describing entities.

TypeDef #2 (02000003)

TypDefName: CalculatorExample.Calc (02000003)

Flags : [NotPublic] [AutoLayout] [Class]

[AnsiClass] [BeforeFieldInit] (00100001)

Extends : 01000001 [TypeRef] System.Object

Method #1 (06000003)

MethodName: Add (06000003)

Flags : [Public] [HideBySig] [ReuseSlot] (00000086)

RVA : 0x00002090

ImplFlags : [IL] [Managed] (00000000)

CallCnvntn: [DEFAULT]

hasThis

ReturnType: I4

2 Arguments

Argument #1: I4

Argument #2: I4

2 Parameters

(1) ParamToken : (08000001) Name : x flags: [none] (00000000)

(2) ParamToken : (08000002) Name : y flags: [none] (00000000)

 class Calc // The C# calculator.

 {

 public int Add(int x, int y)

 { return x + y; }

 }

Just-in-time compiling

The runtime is designed to enhance performance.
Although the common language runtime provides many
standard runtime services, managed code is never
interpreted. A feature called just-in-time (JIT) compiling
enables all managed code to run in the native machine
language of the system on which it is executing.
Meanwhile, the memory manager removes the
possibilities of fragmented memory and increases
memory locality-of-reference to further increase
performance.

Platform independence

 When Microsoft released the C# programming language and the .NET platform, they
also crafted a set of formal documents that described the syntax and semantics of the C#
and CIL languages, the .NET assembly format, core .NET namespaces, and the mechanics of
a hypothetical .NET runtime engine (known as the Virtual Execution System, or VES).

 Better yet, these documents have been submitted to (and ratified by) ECMA
International as official international standards. The specifications of interest are
(http://www.ecma-international.org):

• ECMA-334: The C# Language Specification
• ECMA-335: The Common Language Infrastructure (CLI)

Partitions of ECMA-335 Meaning in Life

Partition I: Architecture Describes the overall architecture of the CLI, including the rules of the

CTS and CLS, and the mechanics of the .NET runtime engine

Partition II: Metadata Describes the details of .NET metadata

Partition III: CIL Describes the syntax and semantics of CIL code

Partition IV: Libraries Gives a high-level overview of the minimal and complete class libraries

that must be supported by a .NET distribution.

Partition V: Annexes Provides a collection of “odds and ends” details such as class library

design guidelines and the implementation details of a CIL compiler

Open source .NET distributions

Partition IV (Libraries) defines a minimal set of namespaces that represent the core services
expected by a CLI distribution (collections, console I/O, file I/O, threading, reflection, network

access, core security needs, XML manipulation, and so forth).

The CLI does not define namespaces that facilitate web development (ASP.NET), database
access (ADO.NET), or desktop graphical user interface (GUI) application development

(Windows Forms/Windows Presentation Foundation).

Distribution Meaning in Life

http://www.mono-project.com The Mono project is an open source distribution of the CLI that

targets various Linux distributions (e.g., SuSE, Fedora, and so on) as

well as Win32 and Mac OS X.

http://www.dotgnu.org Portable.NET is another open source distribution of the CLI that runs

on numerous operating systems. Portable.NET aims to target as

many operating systems as possible (Win32, AIX, BeOS, Mac OS X,

Solaris, all major Linux distributions, and so on).

Thanks for attention

