Theme 2

Operating systems

-Basic concepts
-User interface
-High level structure
-System primitives
-Kernel architecture

Subjects:

Duration - 4 ac.h.

Operating systems basic concepts

User
Operating System (OS) is an interface between hardware and user T i
which is responsible for the management and coordination of
activities and the sharing of the resources of the computer that acts . .
as a host for computing applications run on the machine. Appllcatlun

Google Chrome OS Mac

Darwin

1)
E , /Ems{ Wy
4 soLaris
Wl SolarisOs OpenSolaris

Microsoft Windo

Command line interface vs. Graphical user interface

-

BN Ch\Windowshsystem32\cmd.exe hii® .:1 |

Microsoft Windows [UVersion 6.0.6001]
Copyright (c> 2006 Microsoft Corporation. All rights reserved.

C:~Userz-UWhite Sealxdir
Uolume in drive C has no label.
Uolume Serial Mumber iz ?BEO-D3F6

Directory of C:slUsersslhite Seal

01 .10. 21:05 <DIR> .
01 .10. 21:05 <DIR> .
22 .08 . 19:56 <DIR> Contacts
27.09. <DIR> Desktop
25.09. <DIR* Documents
22.08. <DIR> Downloads
26 .08 . <DIR> Favorites
22 .08 . <DIR> Links
22.08. <DIR> Music
26.09. <DIR> Pictures
16.09. <DIR> faved Games
22 _08. <DIR> Searches
22.08. <DIR> Videos
0 File<s> 0 bytes
13 Dir<s> 37 607 706 624 bytes Caesarcipher

. - iphertext
Users may interact with the — . T
operating system with some | & AR AR AR SR R S SR AR
kl n d Of S oftwa re user inte rfa ce [ir:glf;ﬁva\ue -490,?3 -550,22 -540,?3 -EED,ES -500,92 573 G444 7240 -?10,15 -?50,?0 -ssu,sn
(SL-JI) Ilke typ|ng C.Omrrjands by -49,7835838989251
using command line interface R
(CLI) Or USing a graphical user -65.3087350129437
interface (GUI[Commonly -73.071116565553
pronounced “gooey”). a0.8334941260623

0 6 12 18 24 30 36

w

3]
Key [zhift]
0 s
B C
1 12
omx - 0mvz
-6.257 -5.865
-78.98 -54.21
>
Help

Close

Graphical user interface

Mac 05X
X

GUIl is more preferred !!!

Windows architecture

System supporting
processes

Service manager

Service processes Applications

_‘ Environment

| Svchosiexe |

Lsass | Winmgmi.exe Task manager
i Spooler.exe Windows Explorar
Winlogon
Session manager Spooler User application

Subsystems DLLs

subsystemns

0572

| POSIX

Ntdll.dll

System
threads

User mode

Yy Yy

Kernel mode

Executive services

(Kernel mode drivers)

-

Devices and
file systems
drivers

ayosed wesks a4

JaBeuepy 108lgo
Jabeuep| fejg pue Bnid
Jabeueww Jamod
Jojuow
gouadalal flunaeg
Jabeuepy fowsp BN,
spealy) pue sassa0ld
fsiBay
s||ea saunpasoid (2207

Win32 USER GDI

Graphics drivers

Kemel

Hardware abstraction layer (HAL)

Hardware interfaces (buses, Input-output devices, interrupts, timers, DMA, memory cache management etc.)

Operating system modes

Interrupts. Interrupt-based programming is directly supported by most CPUs. Interrupts
provide a computer with a way of automatically running specific code in response to events.

Iliiiiiiill
/7 (peripheral) CPU directly
E calls OS
\ Internal
(in OS)

function
When a computer first starts up, it is automatically running in supervisor mode. The first few
programs to run on the computer, being the BIOS, bootloader and the operating system
have unlimited access to hardware.

In protected mode, programs may have access to a more limited set of the CPU's
instructions. A user program may leave protected mode only by triggering an interrupt,
causing control to be passed back to the kernel. In this way the operating system can
maintain exclusive control over things like access to hardware and memory.

Program execution

Embedded ~ ~_

%
%
////

The operating system acts as an interface between an application
and the hardware; this system is a set of services which simplifies
development of applications. Executing a program involves the
creation of a process by the operating system.

/ Start creation of process \

Assigning memory and supporting resources

Establishing priority for the process

Loading program code into memory

Executing program

\ Kernel full contrcy

Processes and Threads

What is process?

Represents an instance of a running program

- You create a process to run a program
- Starting an application creates a process

Process defined by

- Address space
- Resources (e.g., open handles)
- Security profile (token)

CPU Time

Scheduler

| Per-process address space

System-wide address space

Processes and Threads

What is thread?

Represents an instance of a running program

- An execution context within a process
- Unit of scheduling (threads run, processes don’t run)

All threads in a process share the same per-process
address space

All threads in the system are scheduled as peers to all
others, without regard to their “parent” process

Symmetric processing Asymmetric processing

CPU A CPUB CPU A cPUB

Operating system

User thread

User thread ;
Operating system @
User thread
User thread

Operating system
N)e Eﬁ

Input-output devices Input-output devices

||m .

{

g..
&
Y

| Per-process address space

\\System-wide address space/

Processes And Threads

Every process starts with one thread

First thread executes the program’s “main” function
Can create other threads in the same process
Can create additional processes

Why divide an application into multiple threads?
Perceived user responsiveness, parallel/background execution

Symmetic processing

Processor A

Processor B

Operating system

ol
HEOLO

WUeer thread

User thread

Usar thread

COperating system

g .
ok

Inputfoutput devices

Examples: Word background print — can continue to edit during print

Take advantage of multiple processors

On an MP system with n CPUs, n threads can literally run at the same time

Question: Given a single threaded application, will adding a second processor make it run faster?

Does add complexity
Synchronization

Scalability well is a different question...

Number of multiple runnable threads versus number CPUs
Having too many runnable threads causes excess context switching

Asymmetric processing

Frocessor A

Processor B

Operating system

User thread

N

|
&

Y

Inputfoutput devices

CPUs

Symmetric Multiprocessing (SMP) % ’2 % %
L2-Cache

No master processor | | | |

e All the processors share just one memory space
* Interrupts can be serviced on any processor Memory
* Any CPU can cause another CPU to reschedule what it’s running /o

Hyperthreading support
CPU fools OS into thinking there are multiple CPUs

Example: dual Xeon with hyperthreading can support 2 logical processors
XP, Vista & Windows Server are hyperthreading aware

Logical processors don’t count against physical CPU limits

Scheduling algorithms take into account logical vs physical processors

Dual Core
Processor licensing is per-socket

NUMA (non uniform memory architecture) — supports only in Server versions
Groups of physical processors (called “nodes”) that have “local memory”

Still an SMP system (e.g. any processor can access all of memory)
But node-local memory is faster

Scheduling algorithms take this into account

It is kernel object to manage groups of processes.

Jobs
/

e Set limits on a process or group of processes.
-

A job object allows control of certain attributes and
provides limits for the process or processes associated with \
the job. It also records basic accounting information for all e
processes associated with the job and for all processes that
were associated with the job but have since terminated. In Processes
some ways, the job object compensates for the lack of a
structured process tree in Windows — yet in many ways it is
more powerful than a UNIX-style process tree.

Quotas and restrictions:
Quotas: total CPU time, # active processes, per-process CPU time, memory usage
Run-time restrictions: priority of all the processes in job; processors threads in job can run on
Security restrictions: limits what processes can do
* not acquire administrative privileges
* not accessing windows outside the job, no reading/writing the clipboard
Scheduling class: number from 0-9 (5 is default) - affects length of thread timeslice (or
guantum); e.g. can be used to achieve “class scheduling” (partition CPU)

Only Datacenter Server version has a built-in tool to take advantage of jobs

' 32-bit x86 Address Sgace ‘

32-bits =4 GB
Default 3 GB User space
| |
| |
2 GB User process 3 GB User process
space space

2 GB System space 1 GB System space

} 64-bit Address Spaces ‘

64-bits =17,179,869,184 GB
x64 today supports 48 bits virtual = 262,144 GB
|A-64 today support 50 bits virtual = 1,048,576 GB

x64 ltanium
| |
|
8192 GB 7152 GB
(8 TB) (7 TB)
| User process space | User process space

6657 GB 6144 GB

System Space System Space

System supporting
W . d K I processes Sernvice processes Applications
I n OWS e r n e Service manager N
Environment
Svchost exe subsystems
Lsass Winmgmt exe Task manager .-
- Spooler.exs Windows Explorer [
Winlogon]
|
Session manager Spooler User application 1
‘ Ntdil.dll ‘
Syslem
Wreads User mode
Kernel mode
Yyw Yy Yy Yy
v Executive services
Kernel mode drivers,
() —
2 S| o c Win32 USER GDI
=] [5]
s|o|s|3| E|2]3 i
© | G 2| 2 sl =l @]
= & |3 2| © @ P b
a 2| |2 |32|83|¢|&2 |3
‘] = | & | 2|2z 8 o |2 | @
Devices and 3 B - B 5 g.. 2 2 @ =
file systems 2 & § 2|73 = = < Q
drivers S|le |32 |¢@ 21 8| 3 o
@ o ol & a2 2 Graphics drivers
2 ® @ @
Kernel
Hardware abstraction layer (HAL)

Lowe r Iaye rs of t h e o pe rati ng syste m Hardware interfaces (buses, Input-output devices, interrupts, timers, DMA, memory cache management etc.)
Implements processor-dependent functions (x86 versus Itanium, etc.)

Also implements many processor-independent functions that are closely associated with processor-
dependent functions

Main services
Thread waiting, scheduling, and context switching
Exception and interrupt dispatching
Operating system synchronization primitives (different for MP versus UP)
A few of these are exposed to user mode

Not a classic “microkernel” (shares address space with rest of kernel-mode components)

Windows Kernel Evolution

Basic kernel architecture has remained stable while system has evolved

* Windows 2000: major changes in 1/O subsystem (plug & play, power management,
WDM), but rest similar to NT4

* Windows XP & Server 2003: modest upgrades as compared to the changes from NT4 to
Windows 2000

Internal version numbers confirm this:
* Windows 2000 was 5.0

* Windows XP is 5.1
* Windows Server 2003 is 5.2

LONGHORN

Professio -3 Ind0W57

Home Premium

* Windows Vista is 6.0 (the same for SP1 and SP2)
* Windows 2008 is 6.1 (Build 7600)
* Windows 7 is 6.1 (build 7600)

Windows Kernel

Is Windows NT/2000/XP/2003 a microkernel-based OS?

No — not using the academic definition (OS components and
drivers run in their own private address spaces, layered on a primitive
microkernel)

All kernel components live in a common shared address space
Therefore no protection between OS and drivers

But it does have some attributes of a microkernel OS
OS personalities running in user space as separate processes

Kernel-mode components don't reach into one another’s data structures
Use formal interfaces to pass parameters and access and/or modify data structures

Therefore the term “modified microkernel”

Why not pure microkernel?

Performance — separate address spaces would mean context switching to call
basic OS services

Linux has the same monolithic kernel architecture
So do most Unix’s, VMS, ...

Hardware abstraction layer

Reduced role since Windows 2000

Bus support moved to bus drivers
Majority of HALs are vendor-independent

Responsible for a small part of “hardware abstraction”

System supporting
processes

Service manager

Sernvice processes

Svchostexe

Lsass

Winlogon

Winmgmt exe
Spooler.exe

Session manager

Spooler

User application

Applications

Task manager III
Windows Explorer ..

Environment
subsystems

as2

POSIX

‘I

‘ NidiLdl ‘
Syslem
Wreads User mode
Kernel mode
™rm Yy Yy Yy
v Executive services
(Kermel mode drivers)]
2 S| o c Win32 USER GDI
=3 Q
s(g|s|3| 8|8 g
I B = S|E18 | 5|2
s |2 g |2|82|8 |8 a8
o 5 = a @
Devices and 3 % 2 § 2 3| 8 £ & =3
=1 =] o g| = o 3 <
file systems 2 & § & 2| = = 5
drivers S|le |32 |¢@ 21 8| 3 o
® Q e & 2 2 Graphics driver
& = 2 7 aphics drivers
Kemnel

Hardware abstraction layer (HAL)

Hardware interfaces (buses, Input-output devices, interrupts, timers, DMA, memory cache management etc.)

Components on the motherboard not handled by drivers

System timers, Cache coherency, and flushing
SMP support, Hardware interrupt priorities

Subroutine library for the kernel and device drivers

Isolates OS & drivers from platform-specific details

Presents uniform model of I/O hardware interface to drivers

Internal function call (Windows API translation)

Windows application

WriteFile in Kernel32.DlI

NtWriteFile in NtDII.DII

call WriteFile(...)

{

call NtWriteFile
return to caller

i

Int 2E or SYSENTER or SYSCALL
return to caller

Win32-specific

used by all
subsystems

user mode

software interrupt

KiSystemService
in NtosKrnl.Exe

NtWriteFile
in NtosKrnl.Exe

call NtWriteFile
dismiss interrupt

do the operation
return to caller

kernel mode

System supporting
. processes Sernvice processes Applications
Executive subsystem Per— |
Environment
subsystems
Lsas: 082
Winlogon
[___posix]
Session mana ger User application
‘ Ntdil.dll ‘
ﬁ“;i“;}; User mode
K | mod
Yyw YYy Yy Yy e
v Executive services
(Kermel mode drivers)]
Ll
Upper layer of the operating system NRE IHEIEE Wind2 USER GDI
= Q o @ | = o
. “u . ” . 5|2 |2]¢2|.8=]|%]
Provides “generic OS” functions 21832 lz2/3|8|3|¢
Devices and 3 § 2 g: g—'% 3 % g. g
O Process Manager lesiens |11 8| & |5|2| 5|53
D Ob.ect Mana er © a2 ® % % % Graphics drivers
J g Kernel
D CaChe Ma nager Hardware abstraction layer (HAL)

Hardware interfaces (buses, Input-output devices, interrupts, timers, DMA, memory cache management etc.)

O LPC (local procedure call) facility

O Configuration Manager

O Memory Manager

O Security Reference Monitor

O I/O Manager

 Power Manager

O Plug-and-Play Manager

* Almost completely portable C code

* Runs in kernel (“privileged”, ring 0) mode
 Most interfaces to executive services not documented

Thanks for attention

