
Theme 2

Operating systems

Subjects:
-Basic concepts
-User interface
-High level structure
-System primitives
-Kernel architecture

Duration - 4 ac.h.

Operating systems basic concepts

Operating System (OS) is an interface between hardware and user
which is responsible for the management and coordination of
activities and the sharing of the resources of the computer that acts
as a host for computing applications run on the machine.

OpenSolaris

Darwin

MAC OS

FreeBSD

Microsoft Windows

Linux

SolarisOS

Google Chrome OS

Command line interface vs. Graphical user interface

Users may interact with the
operating system with some
kind of software user interface
(SUI) like typing commands by
using command line interface
(CLI) or using a graphical user
interface (GUI, commonly
pronounced “gooey”).

Graphical user interface

GUI is more preferred !!!

Windows architecture

Operating system modes

When a computer first starts up, it is automatically running in supervisor mode. The first few
programs to run on the computer, being the BIOS, bootloader and the operating system
have unlimited access to hardware.

In protected mode, programs may have access to a more limited set of the CPU's
instructions. A user program may leave protected mode only by triggering an interrupt,
causing control to be passed back to the kernel. In this way the operating system can
maintain exclusive control over things like access to hardware and memory.

Interrupts. Interrupt-based programming is directly supported by most CPUs. Interrupts
provide a computer with a way of automatically running specific code in response to events.

Event

External
(peripheral)

Internal
(in OS)

CPU directly
calls OS
function

Program execution

Assigning memory and supporting resources

Establishing priority for the process

Loading program code into memory

Executing program

Start creation of process

The operating system acts as an interface between an application
and the hardware; this system is a set of services which simplifies

development of applications. Executing a program involves the
creation of a process by the operating system.

Kernel full control

Processes and Threads

What is process?

Represents an instance of a running program

- You create a process to run a program
- Starting an application creates a process

System-wide address space

Thread

Thread

Thread

Per-process address space

Process defined by
- Address space
- Resources (e.g., open handles)
- Security profile (token)

CPU Time
Sсheduler

P1

P2
P3

P4

Processes and Threads

What is thread?

Represents an instance of a running program

- An execution context within a process
- Unit of scheduling (threads run, processes don’t run)

System-wide address space

Thread

Thread

Thread

Per-process address space

All threads in a process share the same per-process
address space

All threads in the system are scheduled as peers to all
others, without regard to their “parent” process

Processes And Threads

Every process starts with one thread
First thread executes the program’s “main” function

Can create other threads in the same process
Can create additional processes

Why divide an application into multiple threads?
Perceived user responsiveness, parallel/background execution

Examples: Word background print – can continue to edit during print

Take advantage of multiple processors
On an MP system with n CPUs, n threads can literally run at the same time
Question: Given a single threaded application, will adding a second processor make it run faster?

Does add complexity
Synchronization
Scalability well is a different question…

Number of multiple runnable threads versus number CPUs
Having too many runnable threads causes excess context switching

Symmetric Multiprocessing (SMP)

 No master processor
• All the processors share just one memory space
• Interrupts can be serviced on any processor
• Any CPU can cause another CPU to reschedule what it’s running

Hyperthreading support

CPU fools OS into thinking there are multiple CPUs

Example: dual Xeon with hyperthreading can support 2 logical processors

XP, Vista & Windows Server are hyperthreading aware

Logical processors don’t count against physical CPU limits

Scheduling algorithms take into account logical vs physical processors

Dual Core

Processor licensing is per-socket

NUMA (non uniform memory architecture) – supports only in Server versions

Groups of physical processors (called “nodes”) that have “local memory”

Still an SMP system (e.g. any processor can access all of memory)

But node-local memory is faster

Scheduling algorithms take this into account

Jobs

Job

P1

P2

Pn

Processes

It is kernel object to manage groups of processes.

• Set limits on a process or group of processes.

Quotas and restrictions:
Quotas: total CPU time, # active processes, per-process CPU time, memory usage
Run-time restrictions: priority of all the processes in job; processors threads in job can run on
Security restrictions: limits what processes can do

• not acquire administrative privileges
• not accessing windows outside the job, no reading/writing the clipboard

Scheduling class: number from 0-9 (5 is default) - affects length of thread timeslice (or
quantum); e.g. can be used to achieve “class scheduling” (partition CPU)

 A job object allows control of certain attributes and
provides limits for the process or processes associated with
the job. It also records basic accounting information for all
processes associated with the job and for all processes that
were associated with the job but have since terminated. In
some ways, the job object compensates for the lack of a
structured process tree in Windows – yet in many ways it is
more powerful than a UNIX-style process tree.

Only Datacenter Server version has a built-in tool to take advantage of jobs

32-bit x86 Address Space

32-bits = 4 GB

2 GB User process
space

2 GB System space

3 GB User process
space

1 GB System space

Default 3 GB User space

64-bit Address Spaces

64-bits = 17,179,869,184 GB
x64 today supports 48 bits virtual = 262,144 GB
IA-64 today support 50 bits virtual = 1,048,576 GB

8192 GB
(8 TB)

User process space

6657 GB
System Space

7152 GB
(7 TB)

User process space

6144 GB
System Space

x64 Itanium

Windows Kernel

Lower layers of the operating system

Implements processor-dependent functions (x86 versus Itanium, etc.)

Also implements many processor-independent functions that are closely associated with processor-
dependent functions

Main services

Thread waiting, scheduling, and context switching

Exception and interrupt dispatching

Operating system synchronization primitives (different for MP versus UP)

A few of these are exposed to user mode

Not a classic “microkernel” (shares address space with rest of kernel-mode components)

Windows Kernel Evolution

Basic kernel architecture has remained stable while system has evolved

• Windows 2000: major changes in I/O subsystem (plug & play, power management,
WDM), but rest similar to NT4
• Windows XP & Server 2003: modest upgrades as compared to the changes from NT4 to
Windows 2000

Internal version numbers confirm this:

• Windows 2000 was 5.0
• Windows XP is 5.1
• Windows Server 2003 is 5.2

• Windows Vista is 6.0 (the same for SP1 and SP2)
• Windows 2008 is 6.1 (Build 7600)
• Windows 7 is 6.1 (build 7600)

Windows Kernel

Is Windows NT/2000/XP/2003 a microkernel-based OS?

No – not using the academic definition (OS components and
drivers run in their own private address spaces, layered on a primitive
microkernel)

All kernel components live in a common shared address space
Therefore no protection between OS and drivers

But it does have some attributes of a microkernel OS
OS personalities running in user space as separate processes
Kernel-mode components don't reach into one another’s data structures

Use formal interfaces to pass parameters and access and/or modify data structures

Therefore the term “modified microkernel”

Why not pure microkernel?
Performance – separate address spaces would mean context switching to call

basic OS services

Linux has the same monolithic kernel architecture
So do most Unix’s, VMS, …

Hardware abstraction layer

Reduced role since Windows 2000
Bus support moved to bus drivers

Majority of HALs are vendor-independent

Responsible for a small part of “hardware abstraction”
Components on the motherboard not handled by drivers

System timers, Cache coherency, and flushing

SMP support, Hardware interrupt priorities

Subroutine library for the kernel and device drivers
Isolates OS & drivers from platform-specific details

Presents uniform model of I/O hardware interface to drivers

Internal function call (Windows API translation)

call WriteFile(…)

call NtWriteFile
return to caller

Int 2E or SYSENTER or SYSCALL
return to caller

call NtWriteFile
dismiss interrupt

do the operation
return to caller

Windows application

WriteFile in Kernel32.Dll

NtWriteFile in NtDll.Dll

Win32-specific

used by all
subsystems

user mode

kernel mode software interrupt

KiSystemService
in NtosKrnl.Exe

NtWriteFile
in NtosKrnl.Exe

Executive subsystem

• Upper layer of the operating system
• Provides “generic OS” functions
 Process Manager
 Object Manager
 Cache Manager
 LPC (local procedure call) facility
 Configuration Manager
 Memory Manager
 Security Reference Monitor
 I/O Manager
 Power Manager
 Plug-and-Play Manager

• Almost completely portable C code
• Runs in kernel (“privileged”, ring 0) mode
• Most interfaces to executive services not documented

Thanks for attention

