KHARKIV NATIONAL UNIVERSITY OF RADIO ELECTRONICS

# MSGCS PRACTICE #2 QOS in ATM Networks

# ATM Traffic descriptors

An ATM source traffic is characterized by the following traffic descriptors:

- Peak Cell Rate (PCR);
- Sustained Cell Rate (SCR);
- Maximum Burst Size (MBS).

The Peak Cell Rate (PCR) is the maximum cell rate of the source. The Sustainable Cell Rate (SCR) is a long term average cell rate and, therefore, is less than the PCR. The Maximum Burst Size (MBS) specifies the maximum number of cells that can be transmitted by the source at PCR while complying with the negotiated SCR.

The MBS represents the burstiness factor of the connection. The CBR (Constant Bit Rate) traffic is characterized by the PCR. The VBR (Variable Bit Rate) traffic is characterized by the PCR, the SCR and the MBS. For the UBR (Unspecified Bit Rate) traffic, no traffic characterization is needed.



Figure 1 Relationships of ATM Traffic Parameters

| ATM Service | Application Examples    | Traffic Parameters | ATM QoS           |
|-------------|-------------------------|--------------------|-------------------|
| Category    |                         |                    | Parameters        |
| ABR         | Critical data transfer, | MCR, PCR           | CLR (optional)    |
|             | such as for defense     |                    |                   |
|             | information where       |                    |                   |
|             | rapid access to network |                    |                   |
|             | bandwidth is important. |                    |                   |
| CBR         | Telephone               | PCR, CDVT          | Peak-to-peak CDV, |
|             | conversations, voice    |                    | maxCTD, CLR       |

|                                            | mail, or audio services<br>(radio, or audio library).<br>Videoconferencing,<br>video on demand.                   |                        |                                  |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------|
| nrt-VBR                                    | Airline reservations, banking transactions.                                                                       | PCR, CDVT, SCR,<br>MBS | CLR                              |
| rt-VBR                                     | Compressed or<br>packetized voice or<br>video including<br>telephone<br>conversations,<br>voicemail, HDTV.        | PCR, CDVT, SCR,<br>MBS | Peak-to-peak CDV,<br>maxCTD, CLR |
| UBR                                        | File transfer and e-mail.                                                                                         | PCR (optional)         | None supported                   |
| UBR+<br>(developed<br>by Cisco<br>Systems) | Interconnecting IP<br>routers with virtual<br>channel connections<br>(VCCs) or virtul path<br>connections (VPCs). | PCR (optional),<br>MCR | None supported                   |

**ATM Connection Admission Control (CAC)** 

# CAC for CBR traffic

The CAC algorithms for the CBR service are relatively straightforward. A CBR traffic source emits ATM cells periodically at every 1/PCR units. The CAC for CBR takes the PCR as the bandwidth required for the CBR connection. Let the total bandwidth allocated to CBR connections be  $w_{CBR}$ . The **total bandwidth** of the existing CBR connections is given by:

 $w_{CBR}^N = \sum_i^N PCR_i.$ 

The  $(N + 1)^{th}$  request for a virtual connection with  $PCR_{N+1}$  comes to the ATM switch:

 $w_{CBR}^{N+1} = w_{CBR}^N + PCR_{N+1}.$ 

Accept the request if

$$w_{CBR}^{N+1} < w_{CBR}.$$

Reject the request if

$$w_{CBR}^{N+1} \ge w_{CBR}.$$

# **CAC for VBR Traffic**

 $Burstiness = \frac{SCR}{PCR}$ .

If the *Burstiness*  $\ll$  1, the PCR-based CAC would be very inefficient. For the VBR services, a CAC based on effective bandwidths,  $\alpha_i$ , is used:

 $\sum \alpha_i \leq Link \ Capacity.$ 

## **Problems and Solutions**

#### Problem 1

Referring to Figure 2, consider 100 customer lines with PCR of 64 kb/s each. Each line generates 3.6 ccs (*Centi-Call Second*) during the busy hour. The total trunk capacity between ATM switches A and B is 1 Mb/s. How much more bandwidth needs to be added between the two ATM switches to meet the blocking probability of 2% during a busy hour?



#### Solution

First, determine the total offered load at ATM switch A as follows:

 $L = 100 \times 3.6 = 360 \ ccs = \frac{360}{36} = 10 \ erlangs.$ 

From the **Erlang B table**, determine the number of channels needed to meet  $P_B = 2\%$ : N = 17.

The total bandwidth needed is:

 $BW = 64 \times 17 = 1088 \, kb/s.$ 

Hence,  $88 \ kb/s$  of additional bandwidth is needed.

# Problem 2

Referring to **Figure 3**, consider **200 customer lines**, each with **PCR** of **64 kb/s** and **SCR** of **40 kb/s**. Each line generates **1.8 ccs during a busy hour**. The total trunk capacity between ATM switches **A** and **B** is **850 kb/s**. Using this amount of bandwidth, **SVCs** are created, each with bandwidth equal to  $\alpha$  kb/s, where **SCR**<  $\alpha$  <**PCR**. What should  $\alpha$  be to meet the blocking probability of **2%**?



## Solution

First, determine the total offered load at ATM switch **A** as follows:

 $L = 200 \times 1.8 = 360 \ ccs = \frac{360}{36} = 10 \ erlangs.$ 

From the **Erlang B table**, the number of channels required to meet  $P_B = 2\%$  is N = 17.

Solve the following for  $\alpha$ :

$$\frac{850 \ kbps}{\alpha} = 17;$$
$$\alpha = 50 \ kb/s.$$

## **Problem 3**

Consider **200 customer lines** with **PCR** of **32 kb/s** each as shown in **Figure 4**. Each line generates **1.8 ccs during the busy hour**. The total trunk capacity between ATM switches **A** and **B** is **320 kb/s**. Using this amount of bandwidth, **SVCs** are created, each with bandwidth equal to **PCR**, i.e., **32 kb/s**. Determine the blocking probability during the busy hour.

# Solution

First, determine the number of trunked channels as follows:

$$N = \frac{320 \ kbps}{32 \ kbps} = 10.$$

Next, determine the total offered load at ATM switch A as follows:

$$L = 200 \times 1.8 = 360 \ ccs = \frac{360 \ ccs}{36 \ ccs} = 10 \ erlangs.$$

From the **Erlang B table**, with linear interpolation,  $P_B = 21.4$  %.



#### Problem 4

Consider **200 customer lines** with **PCR** of **32 kb/s** and **SCR** of **16 kb/s** each as shown in Figure 5. Each line generates **1.8 ccs during the busy hour**. The total trunk capacity between ATM switches **A** and **B** is **300 kb/s**. Using this amount of bandwidth, **SVCs** are created, each with bandwidth equal to **30 kb/s**. Determine the **blocking probability** during the busy hour.



First, determine the number of trunked channels as follows:

$$N = \frac{300 \ kbps}{30 \ kbps} = 10.$$

Next, determine the total offered load at ATM switch **A** as follows:

 $L = 200 \times 1.8 = 360 ccs = 10 erlangs.$ 

From the **Erlang B table**, with linear interpolation,  $P_B = 21.4$  %.