

KHARKIV NATIONAL UNIVERSITY OF RADIO ELECTRONICS

INFORMATICS

LABORATORY WORK #4
MAZE GAME CREATION

Associate Professor A.S. Eremenko,

Associate Professor A.V. Persikov

Lab work 4 – Maze 2

Maze

In this lab, you build a maze game, where the user has to move the mouse pointer
from the start to the finish without touching any of the walls. You learn how to:

 lay out a form using a Panel container;

 build a maze using Label controls;

 write code to show a message box;

 set up event handlers for mouse events;

 play sounds in your program;

 organize your code using classes.
Here's how the maze will work: The mouse pointer starts at the upper-left corner

of the maze. The user navigates through the maze, being careful not to touch any of the
walls with the pointer. If the pointer touches one of the walls, it automatically jumps
back to the start. But if the pointer reaches the Finish label at the end of the maze, a
"Congratulations" message box opens, and the game ends.

When you finish, your program will look like the following picture.

Step 1: Create a Project and Add a Panel to Your Form

To create a project and add a Panel container
1. On the File menu, click New Project.

Lab work 4 – Maze 3

2. If you’re not using Visual Studio Express, you need to select a language first. From the
Installed Templates list, select C#.
3. Click the Windows Forms Application icon, and then type Maze as the name.
4. Set the form properties:
a. Resize your form by using your pointer to drag the lower-right corner. Watch the
lower-right corner of the integrated development environment (IDE). The size of the
form appears in the status bar. Keep dragging until your form is 650 pixels wide and tall.
You can build a smaller or bigger maze, so make the form any size you want.

b. After your form is the right size, set the Text property to Maze.
c. So that the user cannot resize the form, set the FormBorderStyle property to Fixed3D.
d. Disable the Maximize button in the form's title bar by setting the MaximizeBox
property to False.

Now you have a form that's a fixed size, which the user can't maximize.

Next, you want to create a playing field, where you build the maze. You use a

Panel control for that. A panel is a type of container control that lets you lay out a group
of controls. Unlike some of the other containers (like the TableLayoutPanel container
and the FlowLayoutPanel container), a panel doesn't rearrange the controls that it
contains. That gives you the freedom to position the controls wherever you want, but

Lab work 4 – Maze 4

unlike the TableLayoutPanel or FlowLayoutPanel, a panel isn't helpful when the user
resizes the window.
5. Go to the Containers group in the Toolbox and double-click Panel to add a panel to
your form. When your panel is selected, you should see a move handle icon in its upper-
left corner, which appears as follows.

6. Drag the panel until it's a small distance away from the upper-left corner of the form.
As you drag it, you should notice a useful feature of the IDE: As soon as the panel is a
certain distance from the top or the left edge of the form, it snaps into place, and a blue
spacer line appears between the edge of the panel and the edge of the form. You can
use this to easily align your panel so that its edges are all exactly the same distance from
the edge of the form. As soon as you see the top and left blue spacer lines, release the
mouse button to drop the panel in place. The blue spacer lines appear as follows.

Drag the lower-right drag handle until the panel snaps into place on the right and
bottom.

7. Because you want the user to see the edge of the maze, you need to give it a visible
border. Select the panel and set its BorderStyle property to Fixed3D.
8. Save the project by clicking the Save All toolbar button, which appears as follows.

9. To run your program, press F5 or click the Start Debugging toolbar button, which
appears as follows.

Lab work 4 – Maze 5

When running, your form should look like the following picture.

10. Before going to the next tutorial step, stop your program by either closing the form
or clicking the Stop Debugging toolbar button on the Debug toolbar. (The IDE stays in
read-only mode while your program runs.)

Step 2: Build Your Maze Using Labels

1. In Windows Forms Designer, go to the Common Controls group in the Toolbox and
double-click Label to make the IDE add a label to your form.
2. Set a few properties so that the label becomes a rectangle, which you can resize:

 Set the AutoSize property to False.

 Set the BackColor property to any color you like. (For this tutorial, RoyalBlue is
selected from the Web color tab.)

 Change the Text property so that it's empty by selecting the text label1 and deleting
it.

Your Label control should now be a filled rectangle.

Lab work 4 – Maze 6

3. Now you can be creative when building your maze. Copy your label by selecting it, and
from the Edit menu, select Copy (or press Ctrl+C). Then, paste it several times. From the
Edit menu, select Paste (or press Ctrl+V). This should provide horizontal maze walls. Take
one of the walls and drag it so that it's tall and narrow. Copy and paste it a few times to
provide vertical walls.

4. Drag the labels around your panel and create your maze. Don't make the passages too
narrow, or your game will be too difficult to play. Leave extra space in the upper-left
corner, because that's where the player starts the maze.
5. After you lay out your maze, go to the Common Controls group in the Toolbox and
double-click Label once again. Use the (Name) line in the Properties window to name it
finishLabel, and change its Text property to Finish.
6. Drag your new Finish label to the end of the maze. That's the target that the user
needs to hit.
7. Save your project and run your program again. The following is an example of a
finished maze form. (Your maze will look different.)

Step 3: End the Game

1. Select the finishLabel control, and then click the Event icon at the top of the
Properties window, which is shaped like a lightning bolt. When you click it, instead of
showing the control's properties, it shows the control's events. You can return to the list
of properties by clicking the Property icon. For now, keep the Properties window as is,
so it's showing all of the events for the finishLabel control. Scroll down to the
MouseEnter event. The icons and the MouseEnter event appear as follows.

Lab work 4 – Maze 7

2. Double-click the word MouseEnter. After you do, the IDE automatically adds an event
handler method to your form and shows it to you in the code editor, as follows.

private void finishLabel_MouseEnter(object sender, EventArgs e)
{

}

This event handler method runs every time the mouse pointer enters the label.

3. You want the program to open a message box that shows "Congratulations," and then
you want the program to close. To do that, add lines of code (with a comment), as
follows.

private void finishLabel_MouseEnter(object sender, EventArgs e)
{
 MessageBox.Show("Congratulations");
 Close();
}

Lab work 4 – Maze 8

4. You can learn more about what's happening by using the IDE to explore your code.
Take your mouse pointer and position it so it's over the word MessageBox. You should
see the following tooltip.

5. Save and run your program. Move your mouse pointer over the Finish label. It should
open the message, and then close the program.

Step 4: Add a Method to Restart the Game

1. Go to the code for the form by right-clicking Form1.cs in Solution Explorer and
selecting View Code from the menu.
2. You should see the finishLabel_MouseEnter() method that you added. Just below that
method, add a new MoveToStart() method.

private void MoveToStart()
{
 Point startingPoint = panel1.Location;
 startingPoint.Offset(10, 10);
 Cursor.Position = PointToScreen(startingPoint);
}

3. There's a special type of comment that you can add above any method, and the IDE
can help you add it. Put your cursor on the line above the new method. In Visual C#, add
three slash marks (///). In Visual Basic, add three single quotation marks ('''). The IDE
automatically fills in the following text.

/// <summary>
/// Move the pointer to a point 10 pixels down and to the right
/// of the starting point in the upper-left corner of the maze.
/// </summary>

private void MoveToStart()
{
 Point startingPoint = panel1.Location;
 startingPoint.Offset(10, 10);
 Cursor.Position = PointToScreen(startingPoint);
}

Lab work 4 – Maze 9

4. On the line between the two summary tags, fill in the following comment. (After you
press ENTER, the IDE automatically adds a new line with either three slash marks (///) or
three single quotation marks ('''), depending on your programming language, so you can
continue your comment.)

5. After you add your method, you need to call it. Because you want your program to
move the pointer over the starting point as soon as the program starts, you should call
the method as soon as the form starts. For Visual C#, look for the following method in
your form's code.

public Form1()
{
 InitializeComponent();
 MoveToStart();
}

Note the call to the MoveToStart() method underneath InitializeComponent(). If

you're programming in Visual C#, remember to end that line with a semicolon (;), or your
program won't build.
7. Now save your program and run it. As soon as the program starts, your pointer should
automatically be repositioned slightly down and to the right of the upper-left corner of
the panel.

Step 5: Add a MouseEnter Event Handler for Each Wall

1. Go to Windows Forms Designer and click any of your newly added walls.

2. Go to the Properties window and click the Event icon to display the events for that
wall. Scroll down to the MouseEnter event. Instead of double-clicking it, type the text
wall_MouseEnter, and then press ENTER. The Event icon and Properties window appear
as follows.

Lab work 4 – Maze 10

private void wall_MouseEnter(object sender, EventArgs e)
{

}

4. Next, add a call to your MoveToStart() method, along with a comment explaining the
method. Start by going to your method and adding the statement MoveToStart(). An
IntelliSense window opens, and the following appears.

5. Press TAB to direct IntelliSense to complete the method name. If you're writing Visual
C# code, remember to add the semicolon (;) at the end of the statement. Then add a
comment above the statement. Your code should look like the following.

private void wall_MouseEnter(object sender, EventArgs e)
{
 // When the mouse pointer hits a wall or enters the panel,
 // call the MoveToStart() method.

 MoveToStart();
}

Lab work 4 – Maze 11

6. Save and run your program. Move your mouse pointer over the wall that you
connected the event handler to. (If you don't remember which one you chose, move
your mouse pointer over each wall until you find the right one.) As soon as you touch it,
it should send your mouse pointer back to the start.

Next, you want to do the same for the rest of the walls. You could write the same
MouseEnter event handler for each of the walls. But that process would be lengthy,
would result in multiple lines of the same code in your program, and would be difficult to
change. The IDE provides an easier way to connect the same event handler to all of the
walls.
7. Go to Windows Forms Designer, and from the Edit menu, click Select All.
8. Hold down the CTRL key, and then click the Finish label to clear the selection. This
should leave all of the walls and the panel selected.
9. Now go to the event table on the Properties window. Scroll down to the MouseEnter
event and click the edit box next to it. You should see a drop-down arrow.

If you click the arrow, you see a list of all of the event handlers in your program
that you can choose for this event. In this case, you should see the
finishLabel_MouseEnter event handler that you added earlier, and the wall_MouseEnter
one that you just wrote, as shown in the following picture.

Lab work 4 – Maze 12

10. Select wall_MouseEnter. (If you select the wrong event handler or accidentally add a
new one, you can select all of the walls and the panel again, and then choose the right
method.)

11. Now your maze game should be more fun. Try saving it and running it. If your pointer
hits a wall or if you move your pointer out of the maze and back in again, the program
should automatically reposition the pointer at the starting point of the maze.

Step 6: Add a SoundPlayer

1. Start by adding a SoundPlayer to your form's code, just above the constructor.

public partial class Form1 : Form
{
 // This SoundPlayer plays a sound whenever the player hits a wall.
 System.Media.SoundPlayer startSoundPlayer = new
System.Media.SoundPlayer(@"C:\Windows\Media\chord.wav");

 public Form1()
 {
 InitializeComponent();
 MoveToStart();
 }

2. Earlier, you put your mouse pointer over the word MessageBox in the statement
MessageBox.Show("Congratulations!");, to make the IDE open a tooltip. Do this again
now, but take a closer look at the first line, which appears as follows.

As you may realize, SoundPlayer is a class that plays a sound. When you create a
SoundPlayer with the new keyword, it loads a sound from a file, which you can play using
its Play() method. You will use this SoundPlayer to play the Windows Chord sound when
the player starts a new game, or when the pointer touches a wall and the player has to
start over. (That's why it's called startSoundPlayer.)

3. If you want to use different sounds, replace the path between the quotation marks in
the new statement (C:\Windows\Media\chord.wav) with the path of the sound file that
you want to use.

When you build your form in Windows Forms Designer, you use the IDE to help
you create your own class, in this case, a class called Form1. When you added that line of

Lab work 4 – Maze 13

code above your constructor, you added a new SoundPlayer to your form, just like you
previously added a button or a label. The statement is located outside of the methods so
that the SoundPlayer can be accessed by more than one method. That's why you had to
put the new statement inside your form's code but outside of its methods. You named it
startSoundPlayer, the same way you named one of your Label controls finishLabel.

After you add the statement to create a new SoundPlayer and call it
startSoundPlayer, it appears in the IntelliSense window, just like labels, buttons, and
other controls.

This may seem complicated, but it's similar to what you did previously in the IDE.
For example, when you use the IDE's Toolbox to add a button or label to the form, the
IDE adds lines of code automatically that are used to create a new button or a new label.
You do the same now, except this time, you create a SoundPlayer. (A second
SoundPlayer is created in the next tutorial step.)

Step 7: Add Code to Your Form to Play Sounds

1. Start by adding a second SoundPlayer to play the Windows Tada sound. Your game
will play this sound when the player reaches the Finish label.

public partial class Form1 : Form
{
 // This SoundPlayer plays a sound whenever the player hits a wall.
 System.Media.SoundPlayer startSoundPlayer = new
System.Media.SoundPlayer(@"C:\Windows\Media\chord.wav");

 // This SoundPlayer plays a sound when the player finishes the game.
 System.Media.SoundPlayer finishSoundPlayer = new
System.Media.SoundPlayer(@"C:\Windows\Media\tada.wav");

 public Form1()
 {
 InitializeComponent();
 MoveToStart();
 }

2. Both SoundPlayers are now added to your form. Add a Play() method to call the
SoundPlayer to play the sound at the appropriate time. You want a sound to play when
the user hits a wall. So add the statement startSoundPlayer.Play(); to your
MoveToStart() method. Remember to update the comment. The final method looks like
the following.

private void MoveToStart()
{
 startSoundPlayer.Play();
 Point startingPoint = panel1.Location;
 startingPoint.Offset(10, 10);
 Cursor.Position = PointToScreen(startingPoint);
}

Lab work 4 – Maze 14

3. Add the statement finishSoundPlayer.Play(); to the Finish label MouseEnter event
handler. Remember to update the comment, because you're changing the code, as
follows.

Step 8: Run Your Program and Try Other Features

1. Save your program, and then start it.
2. Be sure your mouse pointer is positioned at the beginning of the maze.
3. Move your mouse pointer through the maze. Touch a wall, and be sure a sound plays
and the mouse pointer is sent back to the start.
4. Move your mouse pointer outside the maze. Then, move the mouse pointer back into
the panel, and verify that the mouse pointer is sent back to the start.
5. Select the panel, and then go to the event table in the Properties window. Scroll down
to the MouseEnter event and select the event name.
6. Press DELETE to delete the event handler name, and then press ENTER. The IDE
automatically disconnects the event handler from the panel. The walls are still
connected, but now you can move your mouse outside of the maze to get to the Finish
label at the bottom.
7. Save and run your program, and be sure the Finish label plays the sound, shows the
message box, and closes the game. After you're sure it works, enable the panel's
MouseEnter event handler by selecting it, going to the event table in the Properties
window, scrolling down to the MouseEnter line, and selecting wall_MouseEnter from
the drop-down list.

