
Compositive structures (part I)

Subjects:
-The char variable type
-Special chars
-The string type
-What`s a value type?
-Comparing string and char
-Naming conventions
-Representation of textual data
-Parsing Values from String Data
-System.String Type
-Special (escape) characters
-Defining Verbatim Strings
-Strings and Equality
-Strings Are Immutable
-Letting the C# compiler infer data types

The char variable type

C# treats letters in two distinctly different ways: individual characters of type char
(usually pronounced char) and strings of characters – a type called, cleverly enough,
string.

The char variable is a box capable of holding a single character. A character constant
appears as a character surrounded by a pair of single quotation marks, as in this example:

char c = ‘a’;

You can store any single character from the Roman, Hebrew, Arabic, Cyrillic, and most
other alphabets. You can also store Japanese katakana and hiragana characters, as well as
many Japanese and Chinese kanjis.

In addition, char is considered a counting type. That means you can use a char
type to control the looping structures. Character variables do not suffer from rounding
problems.

The character variable includes no font information. So you may store in a char
variable what you think is a perfectly good kanji (and it may well be) – but when you view
the character, it can look like garbage if you’re not looking at it through the eyes of the
proper font.

UNICODE

Unicode is a computing industry standard for the consistent encoding, representation
and handling of text expressed in most of the world's writing systems. Developed in
conjunction with the Universal Character Set standard and published in book form as The
Unicode Standard, the latest version of Unicode consists of a repertoire of more than
110,000 characters covering 100 scripts, a set of code charts for visual reference, an
encoding methodology and set of standard character encodings, an enumeration of
character properties such as upper and lower case, a set of reference data computer files,
and a number of related items, such as character properties, rules for normalization,
decomposition, collation, rendering, and bidirectional display order (for the correct
display of text containing both right-to-left scripts, such as Arabic and Hebrew, and left-to-
right scripts). As of September 2012, the most recent version is Unicode 6.2.

Unicode's success at unifying character sets has led to its widespread and predominant
use in the internationalization and localization of computer software. The standard has
been implemented in many recent technologies, including XML, the Java programming
language, the Microsoft .NET Framework, and modern operating systems.

http://en.wikipedia.org/w/index.php?title=File:Unicode_logo.svg&page=1

Special chars

Some characters within a given font are not printable, in the sense that you don’t see
anything when you look at them on the computer screen or printer. The most obvious
example of this is the space, which is represented by the character ‘ ‘ (single quote,
space, single quote). Other characters have no letter equivalent – for example, the tab
character. C# uses the backslash to flag these characters, as shown in Table 1.

Table 1 Special Characters

Character Constant Value
‘\n’ New line
‘\t’ Tab
‘\0’ Null character
‘\r’ Carriage return
‘\\’ Backslash

The string type

Another extremely common variable type is the string.

// Declare now, initialize later.

string someString1;

someString1 = “this is a string”;

// Or initialize when declared - preferable.

string someString2 = “this is a string”;

A string constant, often called a string literal, is a set of characters surrounded by
double quotes.

The following examples show how you declare and initialize string variables:

The string type represents a string of Unicode characters. string is an alias for
System.String in the .NET Framework.

The string type

The characters in a string can include the special characters shown in Table 1. A string
cannot be written across a line in the C# source file, but it can contain the new-line
character, as the following examples show (see boldface):

// The following is not legal.

string someString = “This is a line

and so is this”;

// However, the following is legal.

string someString = “This is a line\nand so is this”;

When written out with Console.WriteLine, the last line in this example places
the two phrases on separate lines, like this:

The string type

A string is not a counting type. A string is also not a value-type – no “string”
exists that’s intrinsic (built in) to the processor. Only one of the common operators works
on string objects: The + operator concatenates two strings into one. For example:

string s = “this is a phrase”

+ “ and so is this”;

These lines of code set the string variable s equal to this character string:

“this is a phrase and so is this”

The string with no characters, written “” (two double quotes in a row), is a valid
string, called an empty string (or sometimes a null string). A null string (“”) is
different from a null char (‘\0’) and from a string containing any amount of space, even
one (“ ”).

You can use the String.Empty value to initialize strings, which means the same
thing as “” and is less prone to misinterpretation:

string mySecretName = String.Empty;

// A property of the String type

What`s a value type?

The variable types that we describe are of fixed length – again with the exception of
string. A fixed-length variable type always occupies the same amount of memory. So
if you assign a = b, C# can transfer the value of b into a without taking extra measures
designed to handle variable length types. This characteristic is why these types of
variables are called value types.

The types int, double, and bool, and their close derivatives (like unsigned int)
are intrinsic variable types built right into the processor. The intrinsic variable types plus
decimal are also known as value types because variables store the actual data. The
string type is neither – because the variable actually stores a sort of “pointer” to the
string’s data, called a reference. The data in the string is actually off in another
location.

The programmer-defined types known as reference types, are neither value types
nor intrinsic. The string type is a reference type, although the C# compiler does accord it
some special treatment because strings are so widely used.

Stack memory

Reference

Heap memory

Value

Comparing string and char

Although strings deal with characters, the string type is amazingly different from
the char. Of course, certain trivial differences exist. You enclose a character with single
quotes, as in this example:

‘a’

On the other hand, you put double quotes around a string:

“this is a string”

“a” // So is this -- see the double quotes?

The rules concerning strings are not the same as those concerning characters. For

one thing, you know that a char is a single character, and that’s it. For example, the
following code makes no sense, either as addition or as concatenation:

char c1 = ‘a’;

char c2 = ‘b’;

char c3 = c1 + c2;

Actually, this bit of code almost compiles – but with a completely different meaning
from what was intended. These statements convert c1 into an int consisting of the
numeric value of c1. C# also converts c2 into an int and then adds the two integers.
The error occurs when trying to store the results back into c3 – numeric data may be
lost storing an int into the smaller char. In any case, the operation makes no sense.

A string, on the other hand, can be any length. So concatenating two strings, as
shown here, does make sense:

string s1 = “a”;

string s2 = “b”;

string s3 = s1 + s2; // Result is “ab”

As part of its library, C# defines an entire suite of string operations.

Comparing string and char

char c1 = ‘a’;

char c2 = ‘b’;

char c3 = c1 + c2;

Naming conventions

Programming is hard enough without programmers making it harder. To make your
C# source code easier to wade through, adopt a naming convention and stick to it. As
much as possible, your naming convention should follow that adopted by other C#
programmers:

The names of things other than variables start with a capital letter, and variables
start with a lowercase letter. Make these names as descriptive as possible – which often
means that a name consists of multiple words. These words should be capitalized but
butted up against each other with no underscore between them – for example,
ThisIsALongName. Names that start with a capital are Pascal-cased, from the way a
1970s-era language called Pascal named things.

The names of variables start with a lowercase letter. A typical variable name looks
like this: thisIsALongVariable-Name. This variable naming style is called camel-
casing because it has humps in the middle.

Prior to the .NET era, it was common among Windows programmers to use a
convention in which the first letter of the variable name indicated the type of the
variable. Most of these letters were straightforward: f for float, d for double, s for
string, and so on. The only one that was even the slightest bit different was n for int.
One exception to this rule existed: For reasons that stretch way back into the Fortran
programming language of the 1960s, the single letters i, j, and k were also used as
common names for an int, and they still are in C#. This style of naming variables was
called Hungarian notation, after a famous Microsoftie Charles Simonyi.

Hungarian notation has fallen out of favor, at least in .NET programming circles. With

recent Visual Studio versions, you can simply rest the cursor on a variable in the
debugger to have its data type revealed in a tooltip box. That makes the Hungarian prefix
a bit less useful, although a few folks still hold out for Hungarian.

Naming conventions

Representation of textual data

C# textual data is represented by the intrinsic string and char keywords, which are
simple shorthand notations for System.String and System.Char, both of which are
Unicode under the hood. A string represents a contiguous set of characters (e.g.,
"Hello"), while the char can represent a single slot in a string type (e.g., 'H').

static void CharFunctionality()

{

 Console.WriteLine("=> char type Functionality:");

 char myChar = 'a';

 Console.WriteLine("char.IsDigit('a'): {0}", char.IsDigit(myChar));

 Console.WriteLine("char.IsLetter('a'): {0}", char.IsLetter(myChar));

 Console.WriteLine("char.IsWhiteSpace('Hello There', 5): {0}", char.IsWhiteSpace("Hello There", 5));

 Console.WriteLine("char.IsWhiteSpace('Hello There', 6): {0}", char.IsWhiteSpace("Hello There", 6));

 Console.WriteLine("char.IsPunctuation('?'): {0}", char.IsPunctuation('?'));

 Console.WriteLine();

}

 The System.Char type provides you with a great deal of functionality beyond the
ability to hold a single point of character data. Using the static methods of System.Char,
you are able to determine whether a given character is numerical, alphabetical, a point of
punctuation, or whatnot.

Parsing Values from String Data

 The .NET data types provide the ability to generate a variable of their underlying type
given a textual equivalent (e.g., parsing). This technique can be extremely helpful when
you wish to convert a bit of user input data (such as a selection from a GUI-based drop-
down list box) into a numerical value.

static void ParseFromStrings()

{

 Console.WriteLine("=> Data type parsing:");

 bool b = bool.Parse("True");

 Console.WriteLine("Value of b: {0}", b);

 double d = double.Parse("99.884");

 Console.WriteLine("Value of d: {0}", d);

 int i = int.Parse("8");

 Console.WriteLine("Value of i: {0}", i);

 char c = Char.Parse("w");

 Console.WriteLine("Value of c: {0}", c);

 Console.WriteLine();

}

Culture-dependent method

Parsing Values from String Data

Parsing refers to the action by software of breaking an artifact into its constituent
elements and capturing the relationship between those elements.
All numeric types have two static parsing methods, Parse and TryParse, that you
can use to convert the string representation of a number into a numeric type.

Int32.Parse(String) Converts the string representation of a number to its 32-
bit signed integer equivalent.
Boolean.Parse(String) Converts the specified string representation of a
logical value to its Boolean equivalent.
Char.Parse(String) Converts the value of the specified string to its equivalent
Unicode character.

Convert Class Converts a base data type to another base data type.

Convert.ToInt32 Method Converts a specified value to a 32-bit signed integer.
Convert.ToDouble Method Converts a specified value to a double-precision
floating point number.
Convert.ToString Method Converts the specified value to its equivalent String
representation.

Parsing Values from String Data

http://msdn.microsoft.com/en-us/library/system.convert(v=VS.71).aspx

System.String Type

 System.String provides a number of methods you would expect from such a utility
class, including methods that return the length of the character data, find substrings within
the current string, convert to and from uppercase/lowercase, and so forth.

String member Meaning in life

Length This property returns the length of the current string.

Compare() This method compares two strings.

Contains() This method determines whether a string contains a specific substring.

Equals() This method tests whether two string objects contain identical character data.

Format()
This method formats a string using other primitives (e.g., numerical data, other

strings) and the {0} notation.

Insert() This method inserts a string within a given string.

PadLeft() These methods are used to pad a string with some characters.

PadRight()

Remove() Use these methods to receive a copy of a string, with modifications (characters
removed or replaced). Replace()

Split()
This method returns a String array containing the substrings in this instance that
are delimited by elements of a specified Char or String array.

Trim()
This method removes all occurrences of a set of specified characters from the
beginning and end of the current string.

ToUpper() These methods create a copy of the current string in uppercase or lowercase
format, respectively. ToLower()

http://msdn.microsoft.com/en-us/library/system.string.aspx

System.String Type

static void BasicStringFunctionality()

{

 Console.WriteLine("=> Basic String functionality:");

 string firstName = "Freddy";

 Console.WriteLine("Value of firstName: {0}", firstName);

 Console.WriteLine("firstName has {0} characters.", firstName.Length();

 Console.WriteLine("firstName in uppercase: {0}", firstName.ToUpper());

 Console.WriteLine("firstName in lowercase: {0}", firstName.ToLower());

 Console.WriteLine("firstName contains the letter y?: {0}“,

firstName.Contains("y"));

 Console.WriteLine("firstName after replace: {0}", firstName.Replace("dy",

""));

 Console.WriteLine();

}

The dot operator (.) is used for
member access. The dot operator
specifies a member of a type or
namespace. For example, the dot
operator is used to access specific
methods within the .NET
Framework class libraries.

http://msdn.microsoft.com/en-us/library/system.console(v=vs.71).aspx

Special (escape) characters

 Like in other C-based languages, C# string literals may contain various escape
characters, which qualify how the character data should be printed to the output stream.
Each escape character begins with a backslash, followed by a specific token.

Character Meaning in life

\' Inserts a single quote into a string literal.

\" Inserts a double quote into a string literal.

\\ Inserts a backslash into a string literal. This can be quite helpful when defining file paths.

\a Triggers a system alert (beep). For console programs, this can be an audio clue to the user.

\n Inserts a new line.

\r Inserts a carriage return.

\t Inserts a horizontal tab into the string literal.

static void EscapeChars()

{

 Console.WriteLine("=> Escape characters:\a");

 string strWithTabs = "Model\tColor\tSpeed\tPet

Name\a ";

 Console.WriteLine(strWithTabs);

 Console.WriteLine("Everyone loves \"Hello World\"\a

");

 Console.WriteLine("C:\\MyApp\\bin\\Debug\a ");

 // Adds a total of 4 blank lines (then beep

again!).

 Console.WriteLine("All finished.\n\n\n\a ");

 Console.WriteLine();

}

Defining Verbatim Strings

When you prefix a string literal with the @ symbol, you have created what is termed a

verbatim string. Using verbatim strings, you disable the processing of a literal’s escape
characters and print out a string as is. This can be most useful when working with strings
representing directory and network paths. Therefore, rather than making use of \\ escape
characters, you can simply write the following:

// The following string is printed verbatim

// thus, all escape characters are displayed.

Console.WriteLine(@”E:\Programs”);

 Also note that verbatim strings can be used to preserve white space for strings that flow
over multiple lines:
// White space is preserved with verbatim strings.

string myLongString = @"This is a very

 very

 very

 long string";

Console.WriteLine(myLongString);

Using verbatim strings, you can also directly insert a double quote into a literal string by
doubling the " token, for example:
Console.WriteLine(@"Cerebus said ""Darrr! Pret-ty sun-sets""");

Strings and Equality

 A reference type is an object allocated on the garbage-collected managed heap. When
you perform a test for equality on reference types (via the C# == and != operators), you
will be returned true if the references are pointing to the same object in memory.

 However, even though the string data type is indeed a reference type, the equality
operators have been redefined to compare the values of string objects, not the object in
memory to which they refer:

static void StringEquality()

{

 Console.WriteLine("=> String equality:");

 string s1 = "Hello!";

 string s2 = "Yo!";

 Console.WriteLine("s1 = {0}", s1);

 Console.WriteLine("s2 = {0}", s2);

 Console.WriteLine();

 // Test these strings for equality.

 Console.WriteLine("s1 == s2: {0}", s1 == s2);

 Console.WriteLine("s1 == Hello!: {0}", s1 == "Hello!");

 Console.WriteLine("s1 == HELLO!: {0}", s1 == "HELLO!");

 Console.WriteLine("s1 == hello!: {0}", s1 == "hello!");

 Console.WriteLine("s1.Equals(s2): {0}", s1.Equals(s2));

 Console.WriteLine("Yo.Equals(s2): {0}", "Yo!".Equals(s2));

 Console.WriteLine();

}

 Notice that the C# equality operators perform a case-sensitive, character-by-character
equality test. Therefore, "Hello!" is not equal to "HELLO!", which is different from "hello!".

Strings Are Immutable

One of the interesting aspects of System.String is that once you assign a string
object with its initial value, the character data cannot be changed. At first glance, this might
seem like a flat-out lie, given that we are always reassigning strings to new values and due to
the fact that the System.

String type defines a number of methods that appear to modify the character data in
one way or another (uppercasing, lowercasing, etc.). However, if you look more closely at
what is happening behind the scenes, you will notice the methods of the string type are in
fact returning you a brand-new string object in a modified format:

static void StringAreImmutable()

{

 // Set initial string value.

 string s1 = "This is my string.";

 Console.WriteLine("s1 = {0}", s1);

 // Uppercase s1?

 string upperString = s1.ToUpper();

 Console.WriteLine("upperString = {0}",

upperString);

 // Nope! s1 is in the same format!

 Console.WriteLine("s1 = {0}", s1);

}

Letting the C# compiler infer data types

Earlier when you declared a variable, you always specified its exact data type, like
this:

int i = 5;

string s = “Hello C#”;

double d = 1.0;

You’re allowed to offload some of that work onto the C# compiler, using the var

keyword:

var i = 5;

var s = “Hello C# 4.0”;

var d = 1.0;

Now the compiler infers the data type for you — it looks at the stuff on the right side

of the assignment to see what type the left side is.

Letting the C# compiler infer data types

Suppose, for example, you have an initializing expression like this:

var x = 3.0 + 2 - 1.5;

The compiler can figure out that x is a double value. It looks at 3.0 and 1.5 and

sees that they’re of type double. Then it notices that 2 is an int, which the compiler
can convert implicitly to a double for the calculation. All of the addition terms in x’s
initialization expression end up as doubles. So the inferred type of x is double.

You can simply use the word var and supply an initialization expression,
and the compiler does the rest:

var aVariable = <initialization expression here>;

Letting the C# compiler infer data types

Take a look at this:

var aString = “Hello C#”;

Console.WriteLine(aString.GetType().ToString());

The WriteLine statement calls the String.GetType() method on aString

to get its C# type. Then it calls the resulting object’s ToString() method to display the
object’s type. Here’s what you see in the console window:

System.String

It proves that the compiler correctly inferred the type of aString.

Being explicit about the type of a variable is clearer to anyone reading your code than
using var.

A new type in C# 4.0 is even more flexible than var: The dynamic type takes var a
step further.

The var type causes the compiler to infer the type of the variable based on expected
input. The dynamic keyword does this at runtime, using a totally new set of tools called
the Dynamic Language Runtime.

Thanks for attention

