
Object-oriented programming and
basic .NET concepts

Subjects:
-Object-oriented programming
-Simple C# program
-Compilation and running
-.NET settings
-Syntax explanation
-Variations on the Main() Method
-Processing of command-line arguments
-Using of Microsoft Development Network

Introduction

Computer scientists have invented object orientation and numerous other concepts that
reduce the level of complexity at which programmers have to work. Using powerful
abstractions makes the job simpler and far less error-prone than it used to be. In a
sense, that’s what the past half-century or so of computing progress has been about:
managing ever more complex concepts and structures with ever fewer errors.

To reduce the number of issues you deal with, you work at a certain
level of detail. In object-oriented (OO) computerese, the level of detail
at which you’re working is the level of abstraction.

OOP

Object-oriented programming (OOP) is a programming paradigm that uses "objects" –
data structures consisting of data-fields and methods – and their interactions to design
applications and computer programs.

 OOP has roots that can be traced to the 1960s. As hardware and software became
increasingly complex, quality was often compromised. Researchers studied ways to maintain
software quality and developed object-oriented programming in part to address common
problems by strongly emphasizing discrete, reusable units of programming logic. The
methodology focuses on data rather than processes, with programs composed of self-
sufficient modules (objects) each containing all the information needed to manipulate its
own data structure.

 An object-oriented program may thus be viewed as a collection of cooperating objects,
as opposed to the conventional model, in which a program is seen as a list of tasks
(subroutines) to perform. In OOP, each object is capable of receiving messages, processing
data, and sending messages to other objects and can be viewed as an independent
'machine' with a distinct role or responsibility. The actions (or "operators") on these objects
are closely associated with the object.

Basic concepts of programming are: simplicity, clarity and generality. These concepts are
the true way for success in complex projects.

Procedural programming versus OOP

Procedural approach has these problems:
✦ It’s too complex. You don’t want the details. If you can’t define the objects and pull
them from the morass of details to deal with separately, you must deal with all the
complexities of the problem at the same time.
✦ It isn’t flexible.
✦ It isn’t reusable. Having solved a problem once, you want to be able to reuse the
solution in other places within my program. If you’re lucky, you may be able to reuse it in
future programs as well.

These C# features are necessary for writing object-oriented programs:

✦ Controlled access: C# controls the way in which class members can be accessed. C#
keywords enable you to declare some members wide open to the public whereas internal
members are protected from view and some secrets are kept private.
✦ Specialization: C# supports specialization through a mechanism known as class
inheritance. One class inherits the members of another class. For example, you can create
a Car class as a particular type of Vehicle.

✦ Polymorphism: This feature enables an object to perform an operation the way it
wants to. The Rocket type of Vehicle may implement the Start operation much
differently from the way the Car type of Vehicle does. But all Vehicles have a
Start operation, and you can rely on that.

✦ Indirection. Objects frequently use the services of other objects — by calling their
public methods. But classes can “know too much” about the classes they use. The two
classes are then said to be “too tightly coupled,” which makes the using class too
dependent on the used class. The design is too brittle — liable to break if you make
changes. But change is inevitable in software, so you should find more indirect ways to
connect the two classes. That’s where the C# interface construct comes in.

C# features

Fundamental concepts and features of OOP

Class. Defines the abstract characteristics of a thing (object), including the thing's
characteristics (its attributes, fields or properties) and the thing's behaviors (the things it
can do, or methods, operations or features). One might say that a class is a blueprint or
factory that describes the nature of something.

 Classes provide modularity and structure in an object-oriented computer program. A
class should typically be recognizable to a non-programmer familiar with the problem
domain, meaning that the characteristics of the class should make sense in context. Also,
the code for a class should be relatively self-contained (generally using encapsulation).
Collectively, the properties and methods defined by a class are called members.

Object. A pattern (exemplar) of a class. The class of Car defines all possible cars by listing
the characteristics and behaviors they can have; the object FordFocus is one particular car,
with particular versions of the characteristics. A FordFocus is model; FordFocus has silver
body color.

CAR

Class Car would consist of traits shared by all cars, such as
model and body color (characteristics), and the ability to
run and to be driven (behaviors).

Fundamental concepts and features of OOP

Instance. One can have an instance of a class or a particular object. The instance is the
actual object created at runtime. In programmer jargon, the FordFocus object is an instance
of the Car class. The set of values of the attributes of a particular object is called its state.
The object consists of state and the behavior that's defined in the object's class.

Method. An object's abilities. In language, methods (sometimes referred to as "functions")
are verbs. Ford Focus is a car that can be driven. So drive() is one of FordFocus methods. She
may have other methods as well, for example on() or off() or accelerate() or decelerate().
Within the program, using a method usually affects only one particular object.

Message passing. "The process by which an object sends data to another object or asks the
other object to invoke a method." Also known to some programming languages as
interfacing. For example, the object called John may tell the FordFocus object to accelerate
by passing a "accelerate" message which invokes "accelerate" method of FordFocus.

FordFocus

Fundamental concepts and features of OOP

Inheritance. "Subclasses" are more specialized versions of a class, which inherit attributes and
behaviors from their parent classes, and can introduce their own. Many models of cars are prototypes
of previous models (model series).

Multiple inheritance is inheritance from more than one ancestor class, neither of these ancestors being
an ancestor of the other. For example, independent classes could define Computers and MobilePhone,
and a Communicator object could be created from these two which inherits all the (multiple) behavior of
computers and mobile phones. This is not always supported, as it can be hard both to implement and to
use well.

Abstraction. Abstraction is simplifying complex reality by modeling classes appropriate to the problem,
and working at the most appropriate level of inheritance for a given aspect of the problem.
 Abstraction is also achieved through composition. For example, a class Car would be made up of an
Engine, Gearbox, Steering objects, and many more components.
 To build the Car class, one does not need to know how the different components work internally, but
only how to interface with them, i.e., send messages to them, receive messages from them, and perhaps
make the different objects composing the class interact with each other.

Encapsulation. Encapsulation conceals the functional details of a class from objects that send messages
to it. For example, the Car class has a accelerate() method. The code for the accelerate() method defines
exactly how a acceleration happens (with checking acceleration limits of car). Encapsulation is achieved
by specifying which classes may use the members of an object.
 The reason for encapsulation is to prevent clients of an interface from depending on those parts of
the implementation that are likely to change in the future, thereby allowing those changes to be made
more easily, that is, without changes to clients.

Simple C# Program

 C# demands that all program logic be contained within a type definition. Unlike many
other languages, in C# it is not possible to create global functions or global points of data.
Rather, all data members and methods must be contained within a type definition.
 To get the ball rolling, create a new Console Application project named
SimpleCSharpApp. As you might agree, the initial code statements are rather uneventful:

using System;

namespace SimpleCSharpApp

{

 class Program

 {

 static void Main()

 {

 }

 }

}

C# is a case-sensitive programming language. Therefore, “Main” is not the same as

“main,” and “Readline” is not the same as “ReadLine.” Given this, be aware that all C#
keywords are lowercase (public, lock, class, global, and so on), while namespaces, types, and
member names begin (by convention) with an initial capital letter and have capitalized the
first letter of any embedded words.

As a rule of thumb, whenever you receive a compiler error regarding
“undefined symbols” be sure to check your spelling!

Compilation and running

You can create source code with
Microsoft Notepad

Compile your program with csc.exe

 Run your
program.

Result of running is
nothing !!!

1

2

3

Path specification

For comfort work with C# compiler
you should specify .NET Framework
path

But you should have
Administrator privileges !!!

Check for changes by typing
path

in command window

Syntax explanation

using System;

namespace SimpleCSharpApp

{

 class Program

 {

 static void Main()

 {

 // Display a simple message to the user.

 Console.WriteLine("***** My First C# App *****");

 Console.WriteLine("Hello World!");

 Console.WriteLine();

 // Wait for Enter key to be pressed before shutting down.

 Console.ReadLine();

 }

 }

}

You can use Visual Studio for
creating of source code

Syntax explanation

using System;

namespace SimpleCSharpApp

{

 class Program

 {

 static void Main()

 {

 // Display a simple message to the user.

 Console.WriteLine("***** My First C# App *****");

 Console.WriteLine("Hello World!");

 Console.WriteLine();

 // Wait for Enter key to be pressed before shutting down.

 Console.ReadLine();

 }

 }

}

using System; This is an instruction to the C# compiler to tell it that we want to use things
from the System namespace. A namespace is a place where particular names have
meaning. In the case of C# the System namespace is where lots of useful things are
described. One of these useful things provided with C# is the Console object which will let
me write things which will appear on the screen in front of the user. If I want to just refer
to this as Console I have to tell the compiler I'm using the System namespace. This means
that if I refer to something by a particular name the compiler will look in.

Syntax explanation

using System;

namespace SimpleCSharpApp

{

 class Program

 {

 static void Main()

 {

 // Display a simple message to the user.

 Console.WriteLine("***** My First C# App *****");

 Console.WriteLine("Hello World!");

 Console.WriteLine();

 // Wait for Enter key to be pressed before shutting down.

 Console.ReadLine();

 }

 }

}

class Program A C# program is made up of one or more classes. A class is container which
holds data and program code to do a particular job.

You need to invent an identifier for every class that you create. I've called ours
Program since this reflects what it does. There is a convention that the name of the file
which contains a particular class should match the class itself, in other words the program
above should be held in a file called Program.cs.

static This keyword makes sure that the method which follows is always present, i.e. the
word static in this context means "it part of the enclosing class and is always here".
 With using of static modifier, we declare, that program start point is Main method.

Syntax explanation

using System;

namespace SimpleCSharpApp

{

 class Program

 {

 static void Main()

 {

 // Display a simple message to the user.

 Console.WriteLine("***** My First C# App *****");

 Console.WriteLine("Hello World!");

 Console.WriteLine();

 // Wait for Enter key to be pressed before shutting down.

 Console.ReadLine();

 }

 }

}

void A void is nothing. In programming terms the void keyword means that the method we
are about to describe does not return anything of interest to us. The method will just do a job
and then finish. In some cases we write methods which return a result.

Main You choose the names of your methods to reflect what they are going to do for you.
Except for Main. This method (and there must be one, and only one such method) is where
your program starts running. When your program is loaded and run the first method given
control is the one called Main. If you miss out the Main method the system quite literally
does not know where to start.

Syntax explanation

using System;

namespace SimpleCSharpApp

{

 class Program

 {

 static void Main()

 {

 // Display a simple message to the user.

 Console.WriteLine("***** My First C# App *****");

 Console.WriteLine("Hello World!");

 Console.WriteLine();

 // Wait for Enter key to be pressed before shutting down.

 Console.ReadLine();

 }

 }

}

() This is a pair of brackets enclosing nothing. This may sound stupid, but actually tells the compiler that
the method Main has no parameters. A parameter to a method gives the method something to work
on. When you define a method you can tell C# that it works on one or more things, for example sin(x)
could work on a floating point value of angle x.

{ and } This is a brace. As the name implies, braces come in packs of two, i.e. for every open brace there
must be a matching close. Braces allow programmers to lump pieces of program together. Such a lump
of program is often called a block. A block can contain the declaration of variable used within it,
followed by a sequence of program statements which are executed in order. When the compiler sees
the matching close brace at the end it knows that it has reached the end of the method and can look for
another (if any). The effects of an unpaired brace are invariably fatal....

Syntax explanation

using System;

namespace SimpleCSharpApp

{

 class Program

 {

 static void Main()

 {

 // Display a simple message to the user.

 Console.WriteLine("***** My First C# App *****");

 Console.WriteLine("Hello World!");

 Console.WriteLine();

 // Wait for Enter key to be pressed before shutting down.

 Console.ReadLine();

 }

 }

}

// Comments Any good written program should have some comments. Any comment should be
informative and describe the actions made/perform in lines of code.

; The semicolon marks the end of the list of variable names, and also the end of that declaration
statement. All statements in C# programs are separated by the ; character, this helps to keep the
compiler on the right track.
 The ; character is actually very important. It tells the compiler where a given statement ends. If the
compiler does not find one of these where it expects to see one it will produce an error.

Console It means that this method is part of an object called Console which looks after the user input
and output.

Syntax explanation

using System;

namespace SimpleCSharpApp

{

 class Program

 {

 static void Main()

 {

 // Display a simple message to the user.

 Console.WriteLine("***** My First C# App *****");

 Console.WriteLine("Hello World!");

 Console.WriteLine();

 // Wait for Enter key to be pressed before shutting down.

 Console.ReadLine();

 }

 }

}

ReadLine This indicates that the ReadLine method is to be invoked. This asks the running program to
dash off, do whatever statements there are in this method, and then come back.
 The C# system contains a number of built in methods to do things for our programs. ReadLine is one
of these. When this program runs the ReadLine method is invoked (or called). It will wait for the user to
enter a line of text and press the Enter key. Whatever is typed in is then returned as a string by the
ReadLine method.

() A method call is followed by the parameters to the method. A parameter is something that is passed
into a method for it to work on. Think of it as raw materials for a process of some kind. In the case of
ReadLine it has no raw materials, it is going to fetch the information from the user console. However, we
still have to tell the method call something, even if it means there are no parameters being supplied.

Variations on the Main() Method

By default, Visual Studio will generate a Main() method that has a void return value
and an array of string types as the single input parameter. This is not the only possible form
of Main(), however. It is permissible to construct your application’s entry point using any of
the following signatures (assuming it is contained within a C# class or structure definition):

// int return type, array of strings as the argument.

static int Main(string[] args)

{

}

// No return type, no arguments.

static void Main()

{

}

// int return type, no arguments.

static int Main()

{

}

Obviously, your choice of how to construct Main() will be based on two questions.
First, do you want to return a value to the system when Main() has completed and your
program terminates? If so, you need to return an int data type rather than void.
Second, do you need to process any user-supplied command-line parameters? If so, they will
be stored in the array of strings.

Processing Command-Line Arguments

let’s examine the incoming array of string data. Assume that you now wish to update
your application to process any possible command-line parameters. One way to do so is
using a C# for loop:

static int Main(string[] args)

{

 // Process any incoming args.

 for(int i=0; i<args.Length; i++)

 Console.WriteLine("Arg: {0}", args[i]);

 Console.ReadLine();

 return -1;

}

Here, you are checking to see whether the array of strings contains some number of
items using the Length property of System.Array.

Power of .NET system

The Environment type exposes a number of extremely helpful methods beyond
GetCommandLineArgs(). Specifically, this class allows you to obtain a number of details
regarding the operating system currently hosting your .NET application using various static
members. To illustrate the usefulness of System.Environment, update your Main() method
to call a helper method named ShowEnvironmentDetails():

static int Main(string[] args)

{

 ...

 // Helper method within the Program class.

 ShowEnvironmentDetails();

 Console.ReadLine();

 return -1;

}

Implement this method within your Program class to call various members of the
Environment type. For example:

static void ShowEnvironmentDetails()

{

 // Print out the drives on this machine,

 // and other interesting details.

 foreach (string drive in Environment.GetLogicalDrives())

 Console.WriteLine("Drive: {0}", drive);

 Console.WriteLine("OS: {0}", Environment.OSVersion);

 Console.WriteLine("Number of processors: {0}", Environment.ProcessorCount);

 Console.WriteLine(".NET Version: {0}", Environment.Version);

}

Using of Microsoft Development Network

www.msdn.microsoft.com

DVD-version

Gathering information about Environment class possibilities

Property Description

CommandLine Gets the command line for this process.

CurrentDirectory Gets or sets the fully qualified path of the current working directory.

ExitCode Gets or sets the exit code of the process.

MachineName Gets the NetBIOS name of this local computer.

NewLine Gets the newline string defined for this environment.

OSVersion Gets an OperatingSystem object that contains the current platform identifier

and version number.

ProcessorCount Gets the number of processors on the current machine.

StackTrace Gets current stack trace information.

SystemDirectory Gets the fully qualified path of the system directory.

TickCount Gets the number of milliseconds elapsed since the system started.

UserDomainName Gets the network domain name associated with the current user.

UserInteractive Gets a value indicating whether the current process is running in user

interactive mode.

UserName Gets the user name of the person who is currently logged on to the Windows

operating system.

Version Gets a Version object that describes the major, minor, build, and revision
numbers of the common language runtime.

Thanks for attention

