
Classes

Subjects:
-Introduction
-Defining a Class and an Object
-Defining a class
-What`s the object?
-Accessing the Members of an Object
-An Object-Based Program Example

Introduction

You can freely declare and use all the intrinsic data types — such as int, double, and
bool — to store the information necessary to make your program the best it can be. For
some programs, these simple variables are enough. However, most programs need a way
to bundle related data into a neat package.

C# provides arrays and other collections for gathering into one structure groups of like-
typed variables, such as strings or ints. A hypothetical college, for example, might
track its students by using an array. But a student is much more than just a name — how
should this type of program represent a student?

Some programs need to bundle pieces of data that logically belong together but aren’t of
the same type.

A college enrollment application handles students, each with her own name, rank (grade-
point average), and serial number. Logically,

the student’s name may be a string;
the grade-point average, a double;
the serial number, a long.

That type of program needs a way to bundle these three different types of variables into a
single structure named Student. Fortunately, C# provides a structure known as the class
for accommodating groupings of unlike-typed variables.

Defining a Class and an Object

A class is a bundling of unlike data and functions that logically belong together into one
tidy package. Classes are designed to represent concepts.

Computer science models the world via structures that represent concepts or things in
the world, such as bank accounts, games, customers, game boards, documents, and
products. Analysts say that “a class maps concepts from the problem into the program”.

For example, your problem might be to build a traffic simulator that models traffic
patterns for the purpose of building streets, intersections, and highways. Any description
of a problem concerning traffic would include the term vehicle in its solution. Vehicles
have a top speed that must be figured into the equation. They also have a weight, and
some of them are clunkers. In addition, vehicles stop and vehicles go. Thus, as a concept,
vehicle is part of the problem domain.

A good C# traffic-simulator program would necessarily include the class Vehicle, which
describes the relevant properties of a vehicle. The C# Vehicle class would have
properties such as topSpeed, weight, and isClunker.

Class is a user-defined type that is composed of field data (often called member
variables) and members that operate on this data (such as constructors, properties,
methods, events, and so forth). Collectively, the set of field data represents the “state” of
a class instance (otherwise known as an object).

Defining a class

An example of the class Vehicle may appear this way:

public class Vehicle

 {

public string model; // Name of the model

public string manufacturer; // Ditto

public int numOfDoors; //The number of doors on the vehicle

public int numOfWheels; // You get the idea.

 }

A class definition begins with the words public class, followed by the
name of the class — in this case, Vehicle. Like all names in C#, the name of
the class is case sensitive. C# doesn’t enforce any rules concerning class
names, but an unofficial rule holds that the name of a class starts with a
capital letter.

!

Defining a class

The class name is followed by a pair of open and closed braces. Within the braces, you
have zero or more members. The members of a class are variables that make up the
parts of the class.

In this example, class Vehicle starts with the member string model, which
contains the name of the model of the vehicle. The second member of this Vehicle
class example is string manufacturer. The other two properties are the number
of doors and the number of wheels on the vehicle.

public class Vehicle

 {

public string model; // Name of the model

public string manufacturer; // Ditto

public int numOfDoors; //The number of doors on the vehicle

public int numOfWheels; // You get the idea.

 }

The members of a class are variables

Defining a class

As with any variable, make the names of the members as descriptive as possible.

The public modifier in front of the class name makes the class universally
accessible throughout the program. Similarly, the public modifier in front of the
member names makes them accessible to everything else in the program. Other
modifiers are possible. !

The class definition should describe the properties of the object that are salient to the
problem at hand.

public class Vehicle

 {

public string model; // Name of the model

public string manufacturer; // Ditto

public int numOfDoors; //The number of doors on the vehicle

public int numOfWheels; // You get the idea.

 }

What`s the object?

A class object is declared in a similar (but not identical) fashion to declaring an intrinsic
object such as an int. The term object is used universally to mean a “thing”. An int
variable is an int object. A vehicle is a Vehicle object. The following code segment
creates a car of class Vehicle:

Vehicle myCar;

myCar = new Vehicle();

The first line declares a variable myCar of type Vehicle, just like you can declare a
somethingOrOther of class int. (Yes, a class is a type, and all C# objects are defined
as classes.)

In C# terms, you say that myCar is an object of class Vehicle. You also say that myCar
is an instance of Vehicle. In this context, instance means “an example of” or “one of”.
You can also use the word instance as a verb, as in instantiating Vehicle. That’s what
new does.

The new Vehicle() command creates a specific object of type Vehicle and stores
the location into the variable myCar. The new operator creates a new block of
memory in which your program can store the properties of myCar.

Compare the declaration of myCar with that of an int variable named num:

int num;

num = 1;

The first line declares the variable num, and the second line assigns an already created
constant of type int into the location of the variable num.

What`s the object?

The intrinsic num and the object myCar are stored differently in memory.
The constant 1 doesn’t occupy memory because both the CPU and the C#
compiler already know what 1 is. Your CPU doesn’t have the concept of
Vehicle. The new Vehicle expression allocates the memory necessary
to describe a vehicle to the CPU, to C#.

!

Vehicle myCar;

myCar = new Vehicle();

Accessing the Members of an Object

Each object of class Vehicle has its own set of members. The following expression
stores the number 1 into the numberOfDoors member of the object referenced by
myCar:

 myCar.numOfDoors = 1;

Every C# operation must be evaluated by type as well as by value. The object myCar is
an object of type Vehicle. The variable myCar.numOfDoors is of type int. (Look
again at the definition of the Vehicle class.) The constant 1 is also of type int, so
the type of the variable on the right side of the assignment operator matches the type
of the variable on the left.

Similarly, the following code stores a reference to the strings describing the model
and manufacturer name of myCar:

myCar.manufacturer = “BMW”;

myCar.model = “Isetta”;

An Object-Based Program Example

The simple VehicleDataOnly program performs these tasks:

✦ Define the class Vehicle.
✦ Create an object myCar.
✦ Assign properties to myCar.
✦ Retrieve those values from the object for display.

Here’s the code for the VehicleDataOnly program:

// VehicleDataOnly -- Create a Vehicle object, populate its

// members from the keyboard, and then write it back out.

using System;

namespace VehicleDataOnly

{

public class Vehicle

{

public string model; // Name of the model

public string manufacturer; // Ditto

public int numOfDoors; // The number of doors on

 //the vehicle

public int numOfWheels; // You get the idea.

}

An Object-Based Program Example

public class Program

{

// This is where the program starts.

static void Main(string[] args)

{

// Prompt user to enter name.

Console.WriteLine(“Enter the properties of your

vehicle”);

// Create an instance of Vehicle.

Vehicle myCar = new Vehicle();

// Populate a data member via a temporary variable.

Console.Write(“Model name = “);

string s = Console.ReadLine();

myCar.model = s;

// Or you can populate the data member directly.

Console.Write(“Manufacturer name = “);

myCar.manufacturer = Console.ReadLine();

// Enter the remainder of the data.

// A temp is useful for reading ints.

Console.Write(“Number of doors = “);

s = Console.ReadLine();

myCar.numOfDoors = Convert.ToInt32(s);

Console.Write(“Number of wheels = “);

s = Console.ReadLine();

myCar.numOfWheels = Convert.ToInt32(s);

// Now display the results.

Console.WriteLine(“\nYour vehicle is a “);

Console.WriteLine(myCar.manufacturer + “ “ +

myCar.model);

Console.WriteLine(“with “ + myCar.numOfDoors + “ doors,

“

+ “riding on “ + myCar.numOfWheels

+ “ wheels.”);

// Wait for user to acknowledge the results.

Console.WriteLine(“Press Enter to terminate...”);

Console.Read();

 }

 }

 }

An Object-Based Program Example

The program listing begins with a definition of the Vehicle class. The definition of a
class can appear either before or after class Program — it doesn’t matter.
The program creates an object myCar of class Vehicle and then populates each field by
reading the appropriate data from the keyboard. (The input data isn’t — but should be —
checked for legality.) The program then writes myCar’s properties in a slightly different
format. The output from executing this program appears this way:

An Object-Based Program Example

The calls to Read() as opposed to ReadLine() leave the cursor directly after the
output string, which makes the user’s input appear on the same line as the prompt. In
addition, inserting the newline character ‘\n’ in a write generates a blank line without
the need to execute WriteLine() separately.

Discriminating between Objects

A program can create numerous objects of the same class, as shown in this example:

Vehicle car1 = new Vehicle();

car1.manufacturer = “Studebaker”;

car1.model = “Avanti”;

// The following has no effect on car1.

Vehicle car2 = new Vehicle();

car2.manufacturer = “Hudson”;

car2.model = “Hornet”;

Creating an object car2 and assigning it the manufacturer name Hudson has no effect
on the car1 object (with the manufacturer name Studebaker). In part, the ability to
discriminate between objects is the real power of the class construct. The object
associated with the Hudson Hornet can be created, manipulated, and dispensed with as a
single entity, separate from other objects, including the Avanti.

Can You Give Me References?

The dot operator and the assignment operator are the only two operators defined on
reference types:

// Create a null reference.

Vehicle yourCar;

// Assign the reference a value.

yourCar = new Vehicle();

// Use dot to access a member.

yourCar.manufacturer = “Rambler”;

// Create a new reference and point it to the same object.

Vehicle yourSpousalCar = yourCar;

The first line creates an object yourCar without assigning it a value. A reference that
hasn’t been initialized is said to point to the null object.

Any attempt to use an uninitialized (null) reference generates
an immediate error that terminates the program. The C#
compiler can catch most attempts to use an uninitialized
reference and generate a warning at build-time.

!

The second statement creates a new Vehicle object and assigns it to yourCar. The
last statement in this code snippet assigns the reference yourSpousalCar to the
reference yourCar. This action causes your SpousalCar to refer to the same object as
yourCar. This relationship is shown in Figure.

Can You Give Me References?

// Create a null reference.

Vehicle yourCar;

// Assign the reference a value.

yourCar = new Vehicle();

// Use dot to access a member.

yourCar.manufacturer = “Rambler”;

// Create a new reference and point it to the same object.

Vehicle yourSpousalCar = yourCar;

Figure: Two references to the same object

The following two calls have the same effect:

// Build your car.

Vehicle yourCar = new Vehicle();

yourCar.model = “Kaiser”;

// It also belongs to your spouse.

Vehicle yourSpousalCar = yourCar;

// Changing one changes the other.

yourSpousalCar.model = “Henry J”;

Console.WriteLine(“Your car is a “ + yourCar.model);

Executing this program would output Henry J and not Kaiser. Notice that
yourSpousalCar doesn’t point to yourCar; rather, both yourCar and
yourSpousalCar refer to the same vehicle.

Can You Give Me References?

Can You Give Me References?

In addition, the reference yourSpousalCar would still be valid, even if the variable
yourCar were somehow “lost” (if it went out of scope, for example), as shown in this
chunk of code:

// Build your car.

Vehicle yourCar = new Vehicle();

yourCar.model = “Kaiser”;

// It also belongs to your spouse.

Vehicle yourSpousalCar = yourCar;

// When your spouse takes your car away ...

 yourCar = null;

// yourCar now references the “null object”.

// yourSpousalCar still references the same vehicle

Console.WriteLine(“your car was a “ + yourSpousalCar.model);

Executing this program generates the output Your car was a Kaiser, even though
the reference yourCar is no longer valid. The object is no longer reachable from the
reference yourCar. The object doesn’t become completely unreachable until both yourCar
and yourSpousalCar are “lost” or nulled out.
At that point the C# garbage collector steps in and returns the space formerly used by that
particular Vehicle object to the pool of space available for allocating more Vehicles (or
Students, for that matter).

null is the default
value for all reference

types of variables.

Making one object variable (a variable of a reference type, such as
Vehicle or Student, rather than one of a simple type such as int or double)
point to a different object makes storing and manipulating reference objects in arrays
and collections quite efficient.

Each element of the array stores a reference to an object, and when you swap
elements within the array, you’re just moving references, not the objects themselves.

Can You Give Me References?

References have a fixed size in memory, unlike
the objects they refer to.

Classes That Contain Classes

The members of a class can themselves be references to other classes. For example,
vehicles have motors, which have power and efficiency factors, including displacement.
You could throw these factors directly into the class this way:

public class Vehicle

{

public string model; // Name of the model

public string manufacturer; // Ditto

public int numOfDoors; // The number of doors on the vehicle

public int numOfWheels; // You get the idea.

// New stuff:

public int power; // Power of the motor [horsepower]

public double displacement; // Engine displacement [liter]

}

Classes That Contain Classes

The motor is a concept of its own and deserves its own class:

public class Motor

{

public int power; // Power [horsepower]

public double displacement; // Engine displacement [liter]

}

You can combine this class into the Vehicle :

public class Vehicle

{

public string model; // Name of the model

public string manufacturer; // Ditto

public int numOfDoors; // The number of doors on the

//vehicle

public int numOfWheels; // You get the idea.

public Motor motor;

}

Classes That Contain Classes

Creating myCar now appears this way:

// First create a Motor.

Motor largerMotor = new Motor();

largerMotor.power = 230;

largerMotor.displacement = 4.0;

// Now create the car.

Vehicle friendsCar = new Vehicle();

friendsCar.model = “Cherokee Sport”;

friendsCar.manufacturer = “Jeep”;

friendsCar.numOfDoors = 2;

friendsCar.numOfWheels = 4;

// Attach the motor to the car.

 friendsCar.motor = largerMotor;

From Vehicle, you can access the motor displacement in two stages. You can take one
step at a time, as this bit of code shows:

Motor m = friendsCar.motor;

Console.WriteLine(“The motor displacement is “ +

m.displacement);

Classes That Contain Classes

Or, you can access it directly, as shown here:

Console.Writeline(“The motor displacement is “ +

friendsCar.motor.displacement);

Either way, you can access the displacement only through the Motor.

Generating Static in Class Members

Most data members of a class are specific to their containing object, not to any other
objects. Consider the Car class:

public class Car

{

public string licensePlate; // The license plate ID

}

Because the license plate ID is an object property, it describes each object of class Car
uniquely. For example, my car has a license plate that’s different from yours; otherwise,
you may not make it out of your driveway, as shown in this bit of code:

Car myCar = new Car();

myCar.licensePlate = “XYZ123”;

Car yourCar = new Car();

yourCar.licensePlate = “ABC789”;

However, some properties exist that all cars share. For example, the number of cars built
is a property of the class Car but not of any single object. These class properties are
flagged in C# with the keyword static.

Generating Static in Class Members

public class Car

{

public static int numberOfCars; // The number of cars built

public string licensePlate; // The license plate ID

}

Static members aren’t accessed through the object. Instead, you access them by
way of the class itself, as this code snippet demonstrates:

// Create a new object of class Car.

Car newCar = new Car();

newCar.licensePlate = “ABC123”;

// Now increment the count of cars to reflect the new one.

Car.numberOfCars++;

The object member newCar.licensePlate is accessed through the object newCar,
and the class (static) member Car.numberOfCars is accessed through the class
Car. All Cars share the same numberOfCars member, so each car contains exactly the
same value as all other cars.

!

Class members are static members. Nonstatic members are specific to each
“instance” (each individual object) and are instance members.

Defining const and readonly Data Members

One special type of static member is the const data member, which represents a
constant. You must establish the value of a const variable in the declaration, and you
cannot change it anywhere within the program, as shown here:

class Program

{

// Number of days in the year (including leap day)

public const int daysInYear = 366; // Must have initializer.

public static void Main(string[] args)

{

// This is an array.

int[] maxTemperatures = new int[daysInYear];

for(int index = 0; index < daysInYear; index++)

{

// . . .accumulate the maximum temperature for each

// day of the year . . .

}

}

}

Defining const and readonly Data Members

You can use the constant daysInYear in place of the value 366 anywhere within your
program. The const variable is useful because it can replace a mysterious number such
as 366 with the descriptive name daysInYear to enhance the readability of your
program.

C# provides another way to declare constants — you can preface a variable declaration
with the readonly modifier, like so:

public readonly int daysInYear = 366; //This could also be

//static.

As with const, after you assign the initial value, it can’t be changed. The readonly
approach to declaring constants is usually preferable to const. You can use const with
class data members and inside class methods. But readonly isn’t allowed in a method.

An alternative convention also exists for naming constants. Rather than
name them like variables (as in daysInYear), many programmers prefer to
use uppercase letters separated by underscores, as in DAYS_IN_YEAR. This
convention separates constants clearly from ordinary read-write variables.

Thanks for attention

