
Theme 3

Algorithms and programming languages

Subjects:
-Basic concepts
-Turing machine
-Expressing algorithms
-Classification of algorithms
-Programming languages
-Generations of programming languages
-Application Programming Interface

Duration - 2 ac.h.

Basic concepts

 In mathematics, computing, linguistics, and related subjects, an algorithm is an effective
method for solving a problem using a finite sequence of instructions.

Algorithms are used for calculation, data processing, and many other fields.

Algorithms are essential to the way computers process information.
Many computer programs contain algorithms that specify the specific
instructions a computer should perform (in a specific order) to carry out a
specified task, such as calculating employees’ paychecks or printing
students’ report cards.

An algorithm is a specific set of instructions for
carrying out a procedure or solving a problem, usually
with the requirement that the procedure terminate at
some point.
Specific algorithms sometimes also go by the name
method, procedure, or technique. The word
"algorithm" is a distortion of al-Khwārizmī, a Persian
mathematician who wrote an influential treatise about
algebraic methods. The process of applying an
algorithm to an input to obtain an output is called a
computation.

//upload.wikimedia.org/wikipedia/commons/9/91/LampFlowchart.svg

Basic concepts

Each algorithm is a list of well-defined instructions for
completing a task. Starting from an initial state, the
instructions describe a computation that proceeds through a
well-defined series of successive states, eventually
terminating in a final ending state.

Start

Action/Process

Decision

Stop

Subroutines

Thus, an algorithm can be considered to be any sequence of
operations that can be simulated by a Turing-complete

system.

The transition from one state to the next is not
necessarily deterministic; some algorithms,
known as randomized algorithms, incorporate
randomness.

Turing machine

 What is the Turing machine? It is hypothetical computing device proposed by Alan M.
Turing; it is not actually a machine, it is an idealized mathematical model that reduces the
logical structure of any computing device to its essentials.

 It consists of an infinitely extensible tape, a tape
head that is capable of performing various operations on
the tape, and a modifiable control mechanism in the
head that can store instructions. As envisaged by Turing,
it performs its functions in a sequence of discrete steps.
His extrapolation of the essential features of information
processing was instrumental in the development of
modern digital computers, which share his basic scheme
of:
• an input/output device (tape and tape reader),
• central processing unit (CPU, or control mechanism),
• and stored memory.

 Alan Turing visualized a "state machine" that was capable of basic
computing. He never actually built his Turing Machine but people have
paid homage to him by creating modern examples of the machine that he
imagined. A state machine is a device which is controlled by the "current
state" and a set of instructions which determines the "next state". In
other words, a prototype for the computers of today.

Expressing algorithms

 Algorithms can be expressed in many kinds of notation, including natural languages,
pseudocode, flowcharts, and programming languages.

 Natural language expressions of algorithms tend to be verbose and ambiguous, and are
rarely used for complex or technical algorithms.

 Pseudocode and flowcharts are structured ways to express algorithms that avoid many
of the ambiguities common in natural language statements, while remaining independent
of a particular implementation language.

!

Pseudocode is a computing notation
resembling a simplified programming
language, used in program design.

Flow chart is a graphical representation of a computer
program in relation to its sequence of functions (as
distinct from the data it processes).

Expressing algorithms

int Euclid(int value, int module)

{

 int u1=value, u2=1, u3=0, v1=module, v2=0, v3=1, q, t1, t2, t3;

 while (v1 != 0) {

 q = u1 / v1;

 t1 = u1%v1; t2 = u2-q*v2; t3 = u3-q*v3; // T = U

 u1 = v1; u2 = v2; u3 = v3; v1 = t1; v2 = t2; v3 = t3; // U = V, V = T

 if ((u1 % v1) == 0) {

 if (v2 < 0) return (v2+module);

 return v2;

 }

 }

 return 0;

}

 Programming languages are primarily intended for expressing algorithms in a form that
can be executed by a computer, but are often used as a way to define or document
algorithms.

 There is a wide variety of representations possible and one can
express a given Turing machine program as a sequence of machine
tables, as flowcharts, or as a form of rudimentary machine code or
assembly code called "sets of quadruples".

Sometimes it is helpful in the description of an algorithm to
supplement small "flow charts" (state diagrams) with natural-language
and/or arithmetic expressions written inside "block diagrams" to
summarize what the "flow charts" are accomplishing.

Do 1

is 2? end

Do 3

Classification of algorithms (by implementation)

Recursion or iteration: A recursive algorithm is one that invokes (makes reference to) itself
repeatedly until a certain condition matches, which is a method common to functional
programming. Iterative algorithms use repetitive constructs like loops and sometimes
additional data structures like stacks to solve the given problems. Some problems are
naturally suited for one implementation or the other.

Every recursive version has an equivalent (but possibly
more or less complex) iterative version, and vice versa.

Logical: An algorithm may be viewed as controlled logical deduction. This notion may be
expressed as: Algorithm = logic + control. The logic component expresses the axioms that
may be used in the computation and the control component determines the way in which
deduction is applied to the axioms.

Serial or parallel or distributed: Algorithms are usually discussed with the assumption that
computers execute one instruction of an algorithm at a time. Those computers are
sometimes called serial computers. An algorithm designed for such an environment is called
a serial algorithm, as opposed to parallel algorithms or distributed algorithms. Parallel
algorithms take advantage of computer architectures where several processors can work on
a problem at the same time, whereas distributed algorithms utilize multiple machines
connected with a network. Parallel or distributed algorithms divide the problem into more
symmetrical or asymmetrical subproblems and collect the results back together.

Classification of algorithms (by design paradigm)

 Another way of classifying algorithms is by their design methodology or paradigm. There
is a certain number of paradigms, each different from the other. Furthermore, each of these
categories will include many different types of algorithms.

Brute-force or exhaustive search. This is the naive method of trying every possible solution to see
which is best.

Divide and conquer. This algorithm repeatedly reduces an instance of a problem to one or more
smaller instances of the same problem (usually recursively) until the instances are small enough to
solve easily. One such example of divide and conquer is merge sorting. Sorting can be done on each
segment of data after dividing data into segments and sorting of entire data can be obtained in the
conquer phase by merging the segments.

Dynamic programming. If the optimal solution to a problem can be constructed from optimal solutions
to subproblems, and overlapping subproblems, meaning the same subproblems are used to solve many
different problem instances, a quicker approach called dynamic programming. It avoids recomputing
solutions that have already been computed. For example, the shortest path to a goal from a vertex in a
weighted graph can be found by using the shortest path to the goal from all adjacent vertices.

Linear programming. When solving a problem using linear programming, specific inequalities involving
the inputs are found and then an attempt is made to maximize (or minimize) some linear function of
the inputs. Many problems (such as the maximum flow for directed graphs) can be stated in a linear
programming way, and then be solved by a 'generic' algorithm such as the simplex algorithm. A more
complex variant of linear programming is called integer programming, where the solution space is
restricted to the integers.

Classification of algorithms (by design paradigm)

Reduction. This technique involves solving a difficult problem by transforming it into a better known
problem for which we have (hopefully) asymptotically optimal algorithms. The goal is to find a reducing
algorithm whose complexity is not dominated by the resulting reduced algorithm's. For example, one
selection algorithm for finding the median in an unsorted list involves first sorting the list (the expensive
portion) and then pulling out the middle element in the sorted list (the cheap portion). This technique is
also known as transform and conquer.
Search and enumeration. Many problems (such as playing chess) can be modeled as problems on
graphs. A graph exploration algorithm specifies rules for moving around a graph and is useful for such
problems. This category also includes search algorithms, branch and bound enumeration and
backtracking.

The probabilistic and heuristic paradigm. Algorithms belonging to this class fit the definition of an
algorithm more loosely.

1.Randomized algorithms are those that make some choices randomly (or pseudo-randomly); for some
problems, it can in fact be proven that the fastest solutions must involve some randomness. There are
two large classes of such algorithms:

•Monte Carlo algorithms return a correct answer with high-probability. E.g. RP is the subclass of
these that run in polynomial time)
•Las Vegas algorithms always return the correct answer, but their running time is only bound in
probaility, e.g. ZPP.

2.In optimization problems, heuristic algorithms do not try to find an optimal solution, but an
approximate solution where the time or resources are limited. They are not practical to find perfect
solutions. An example of this would be local search, tabu search, or simulated annealing algorithms, a
class of heuristic probabilistic algorithms that vary the solution of a problem by a random amount.

Other classification of algorithms

By field of study. Every field of science has its own problems and needs efficient algorithms. Related
problems in one field are often studied together. Some example classes are search algorithms, sorting
algorithms, merge algorithms, numerical algorithms, graph algorithms, string algorithms, computational
geometric algorithms, combinatorial algorithms, machine learning, cryptography, data compression
algorithms and parsing techniques.

By complexity. Algorithms can be classified by the amount of time they need to complete compared to
their input size. There is a wide variety: some algorithms complete in linear time relative to input size,
some do so in an exponential amount of time or even worse, and some never halt. Additionally, some
problems may have multiple algorithms of differing complexity, while other problems might have no
algorithms or no known efficient algorithms. There are also mappings from some problems to other
problems. Owing to this, it was found to be more suitable to classify the problems themselves instead of
the algorithms into equivalence classes based on the complexity of the best possible algorithms for
them.

By computing power. Another way to classify algorithms is by computing power. This is typically done by
considering some collection (class) of algorithms. A recursive class of algorithms is one that includes
algorithms for all Turing computable functions. Looking at classes of algorithms allows for the possibility
of restricting the available computational resources (time and memory) used in a computation. A
subrecursive class of algorithms is one in which not all Turing computable functions can be obtained. For
example, the algorithms that run in polynomial time suffice for many important types of computation
but do not exhaust all Turing computable functions. The class of algorithms implemented by primitive
recursive functions is another subrecursive class.

Programming languages

A programming language is an artificial language designed to express computations that
can be performed by a machine, particularly a computer. Programming languages can be used
to create programs that control the behavior of a machine, to express algorithms precisely, or as
a mode of human communication.

A programming language is a notation for writing programs, which are specifications of a
computation or algorithm. Some, but not all, authors restrict the term "programming language" to those
languages that can express all possible algorithms. Traits often considered important for what
constitutes a programming language include:

Function and target: A computer programming language is a language used to write computer
programs, which involve a computer performing some kind of computation or algorithm and possibly
control external devices such as printers, disk drives, robots, and so on. For example PostScript
programs are frequently created by another program to control a computer printer or display.

Abstractions: Programming languages usually contain abstractions for defining and manipulating data
structures or controlling the flow of execution. The practical necessity that a programming language
support adequate abstractions is expressed by the abstraction principle; this principle is sometimes
formulated as recommendation to the programmer to make proper use of such abstractions.

Expressive power: The theory of computation classifies languages by the computations they are capable
of expressing. All Turing complete languages can implement the same set of algorithms. ANSI/ISO SQL
and Charity are examples of languages that are not Turing complete, yet often called programming
languages.

!

Generations of programming languages

 Programming languages have been classified into several programming language generations.
Historically, this classification was used to indicate increasing power of programming styles. Later writers
have somewhat redefined the meanings as distinctions previously seen as important became less
significant to current practice.

A first-generation programming language is a machine-level programming language. Originally,
no translator was used to compile or assemble the first-generation language. The first-generation
programming instructions were entered through the front panel switches of the computer system.

The main benefit of programming in a first-generation programming language is that the code a
user writes can run very fast and efficiently, since it is directly executed by the CPU. However, machine
language is a lot more difficult to learn than higher generational programming languages, and it is far
more difficult to edit if errors occur.

Second-generation programming language is a generational way to categorize assembly
languages. The term was coined to provide a distinction from higher level third-generation
programming languages (3GL) such as COBOL and earlier machine code languages. Second-generation
programming languages have the following properties:
• The code can be read and written by a programmer. To run on a computer it must be converted
into a machine readable form, a process called assembly.
• The language is specific to a particular processor family and environment.

Second-generation languages are sometimes used in kernels and device drivers (though C is
generally employed for this in modern kernels), but more often find use in extremely intensive
processing such as games, video editing, graphic manipulation/rendering.

Generations of programming languages

A third-generation programming language (3GL) is a refinement of a second-generation
programming language. Whereas a second generation language is more aimed to fix logical structure to
the language, a third generation language aims to refine the usability of the language in such a way to
make it more user friendly. This could mean restructuring categories of possible functions to make it
more efficient, condensing the overall bulk of code via classes (eg. Visual Basic). A third generation
language improves over a second generation language by having more refinement on the usability of
the language itself from the perspective of the user.

 First introduced in the late 1950s, Fortran, ALGOL and COBOL are early examples of this sort
of language. Most "modern" languages (BASIC, C, C++, C#, Pascal, and Java) are also third-generation
languages. Most 3GLs support structured programming.

A fourth-generation programming language (1970s-1990) (abbreviated 4GL) is a programming
language or programming environment designed with a specific purpose in mind, such as the
development of commercial business software. In the evolution of computing, the 4GL followed the
3GL in an upward trend toward higher abstraction and statement power. The 4GL was followed by
efforts to define and use a 5GL.

The natural-language, block-structured mode of the third-generation programming languages
improved the process of software development. However, 3GL development methods can be slow and
error-prone. It became clear that some applications could be developed more rapidly by adding a
higher-level programming language and methodology which would generate the equivalent of very
complicated 3GL instructions with fewer errors. In some senses, software engineering arose to handle
3GL development. 4GL and 5GL projects are more oriented toward problem solving and systems
engineering.

Generations of programming languages

A fifth-generation programming language (abbreviated 5GL) is a programming
language based around solving problems using constraints given to the program, rather
than using an algorithm written by a programmer. Most constraint-based and logic
programming languages and some declarative languages are fifth-generation languages.

While fourth-generation programming languages are designed to build specific
programs, fifth-generation languages are designed to make the computer solve a given
problem without the programmer. This way, the programmer only needs to worry about
what problems need to be solved and what conditions need to be met, without worrying
about how to implement a routine or algorithm to solve them. Fifth-generation languages
are used mainly in artificial intelligence research. Prolog, OPS5, and Mercury are examples
of fifth-generation languages.

Most common used programming paradigms

Imperative programming. In computer science, imperative programming is a programming paradigm
that describes computation in terms of statements that change a program state. In much the same
way that imperative mood in natural languages expresses commands to take action, imperative
programs define sequences of commands for the computer to perform.

Procedural programming can sometimes be used as a synonym for imperative programming (specifying
the steps the program must take to reach the desired state), but can also refer to a programming
paradigm based upon the concept of the procedure call. Procedures, also known as routines,
subroutines, methods, or functions (not to be confused with mathematical functions, but similar to
those used in functional programming) simply contain a series of computational steps to be carried
out. Any given procedure might be called at any point during a program's execution, including by other
procedures or itself. A procedural programming language provides a programmer a means to define
precisely each step in the performance of a task.

Object-oriented programming (OOP) is a programming paradigm that uses "objects" – data structures
consisting of datafields and methods – and their interactions to design applications and computer
programs. Programming techniques may include features such as information hiding, data abstraction,
encapsulation, modularity, polymorphism, and inheritance. It was not commonly used in mainstream
software application development until the early 1990s. Many modern programming languages now
support OOP.

Concurrent computing is a form of computing in which programs are designed as collections of
interacting computational processes that may be executed in parallel. Concurrent programs can be
executed sequentially on a single processor by interleaving the execution steps of each computational
process, or executed in parallel by assigning each computational process to one of a set of processors
that may be close or distributed across a network.

Generations of programming languages

Event-driven programming. In computer programming, event-driven programming or event-based
programming is a programming paradigm in which the flow of the program is determined by events –
i.e., sensor outputs or user actions (mouse clicks, key presses) or messages from other programs or
threads.

Functional programming is a programming paradigm that treats computation as the evaluation of
mathematical functions and avoids state and mutable data. It emphasizes the application of functions,
in contrast to the imperative programming style, which emphasizes changes in state.

Functional programming languages, especially purely functional ones, have largely been
emphasized in academia rather than in commercial software development. However, prominent
functional programming languages such as Scheme, Erlang, and Haskell, have been used in industrial and
commercial applications by a wide variety of organizations. Functional programming also finds use in
industry through domain-specific programming languages like R (statistics), Mathematica (symbolic
math), and XSLT (XML). Spreadsheets can also be viewed as functional programming languages.

Metaprogramming is the writing of computer programs that write or manipulate other programs
(or themselves) as their data, or that do part of the work at compile time that would otherwise be
done at runtime. In many cases, this allows programmers to get more done in the same amount of time
as they would take to write all the code manually, or it gives programs greater flexibility to efficiently
handle new situations without recompilation.

The language in which the metaprogram is written is called the metalanguage. The language of the
programs that are manipulated is called the object language. The ability of a programming language to be
its own metalanguage is called reflection or reflexivity.

Programming languages

Language Intended use Paradigm Failsafe

ActionScript 3.0 Web, client-side imperative, object-oriented, event-driven Yes

Ada Application, Embedded,

System and Realtime

imperative, procedural, concurrent,

distributed, generic, object-oriented

Yes

ALGOL 60 Application imperative Yes

Assembly language General No

BASIC Application, Education imperative, procedural Yes, stop

BlitzMax Application, Game imperative, procedural, object-oriented Yes

C System imperative, procedural No

C++ Application; System imperative, procedural, object-oriented,

generic

No

C# Application imperative, object-oriented, functional,

generic, reflective

Yes

COBOL Application, Business imperative, object-oriented Yes

Common Lisp General imperative, functional, object-oriented Not def

Erlang Application, Distributed

and Telecom

functional, concurrent, distributed Yes

FORTRAN Application, scientific

and engineering

imperative, procedural, object-oriented Yes

Game Maker Lang Application, games imperative, object-oriented, event-driven Yes

Programming languages

Language Intended use Paradigm Failsafe

Java Application, Web
imperative, object-oriented, generic,

reflective

Yes

JavaScript Web, client-side
imperative, object-oriented, functional,

reflective

Yes

Mathematica Highly domain-specific, Math procedural, functional Yes

MATLAB

M-code
Highly domain-specific, Math imperative, object-oriented

Yes

Object Pascal

(Delphi)
Application

imperative, object-oriented, generic, event-

driven

Yes

Oxygene Application imperative, object-oriented, generic Yes

Pascal Application, Education imperative, procedural Yes

Perl
Application, Text processing,

Scripting, Web

imperative, procedural, reflective, functional,

object-oriented, generic

Optional

PHP Web, server-side
imperative, procedural, object-oriented,

reflective

Yes

Prolog
Application, Artificial

intelligence
logic

Yes

Visual Basic Application, Education
imperative, component-oriented, event-

driven

Yes

Application Programming Interface

Application programming interface (API) is an interface in computer science that defines the
ways by which an application program may request services from libraries and/or operating
systems. An API determines the vocabulary and calling conventions the programmer should employ to
use the services. It may include specifications for routines, data structures, object classes and
protocols used to communicate between the requesting software and the library.

An API may be:

• Language-dependent; that is, available only in a given programming language, using the syntax and
elements of that language to make the API convenient to use in this context.
• Language-independent; that is, written in a way that means it can be called from several
programming languages (typically an assembly or C interface). This is a desired feature for a service-
style API that is not bound to a given process or system and is available as a remote procedure call.

An API itself is largely abstract in that it specifies an interface and controls the behavior of the

objects specified in that interface. The software that provides the functionality described by an API is
said to be an implementation of the API. An API is typically defined in terms of the programming
language used to build the application. The related term application binary interface (ABI) is a lower
level definition concerning details at the assembly language level.

For example, the Linux Standard Base is an ABI, while POSIX is an API.

Thanks for attention

